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Chapter 1: Panel Data Models

1.1. Static Panel Data Models
Panel data are repeated measures on individuals (i) over time (f). A
longitudinal dataset obtained by following a given sample of individual

agents (or households, firms, cities, regions, countries etc) over time.

Examples:
Consumption function (data on households)
Cost function (data on firms)

Production function (data on firms)

Regress y, on x, fori=1..,N and t=1,..,T

id year yr92 yr93 yr94 DUMI1 DUM2 Y X

1 1992 1 0 0 1 0 55 70
1 1993 0 1 0 1 0 50 68

1 1994 0 0 1 1 0 66 80
2 1992 1 0 0 0 1 77 94
2 1993 0 1 0 0 1 85 100
2 1994 0 0 1 0 1 90 123

)G )G G ) (..) (..) (..)

If all N individuals are observed at all time periods, then balanced panel. If

there are missing observations, then wunbalanced panel. Analyzing
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unbalanced panel data typically raises few additional issues compared with
the analysis of balanced data. However, if the panel is unbalanced for
reasons that are not entirely random (e.g. because firms with relatively low
levels of productivity have relatively high exit rates), then we may need to
take this into account when estimating the model. This can be done by
means of a sample selection model. We abstract from this particular

problem here.

Repeated cross sections are not the same as panel data. Repeated cross
sections are obtained by sampling from the same population at different
points in time. The identity of the individuals (or firms, households etc.) is
not recorded, and there is no attempt to follow individuals over time. This
is the key reason why pooled cross sections are different from panel data.
Even with identical sample sizes, the use if a panel data set will often yield
more efficient estimators than a series of independent/repeated cross-
sections.

Example

yi=A+a+e, (random effects)

Suppose we are interested in the change of A, from one period to another.
Then, the variance of the estimator 1,—1, (s #t) is given by

Var(A,—4,) =Var(4,)+Var(i,)—2Cov(4,,1,)

with A= N7"(y,+..y\), t=1..,T

(21: N_I(Y11+---+yN1) ) /:Lz: N_l(y12+---+yNz) seees iT: N_l(y1T+"'+yNT))

1 1
COV(W(yll—i_"'+yN1)9W(y12+"'+yN2)}
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Assuming cross-sectional independence

1 1 =
:W(Cov(yll,ylz)+...+C0V(yN1,yN2)):WNo-i :Wd

Therefore, Cov(4,,A,)>0 in panel data but Cov(4,,4,)=0 in repeated cross

sections. Thus, if one is interested in changes from one period to another, a

panel will yield more efficient estimators than a series of cross-sections.

Three specializations to general panel methods:
1. Short panels (Micro Panels): assumed, with T small and N — o . Data on

many individual units and few time periods.

2. Long panels (Macro Panels): assumed, with T —-o and N small or
N — . Time series data on many individual units. More common with

aggregate data.
3. Dynamic models: regressors include lagged dependent variables.
Examples of Micro Panel data

- Panel Study of Income Dynamics (PSID)
(https://psidonline.isr.umich.edu)

- The European Community Household Panel (ECHP)

(http://ec.europa.eu/eurostat/web/microdata/european-community-

household-panel)

Examples of Macro Panel data
- Federal Reserve Bank of St. Louis

(https://fred.stlouisfed.org/)
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- Yahoo Finance

(http://finance.yahoo.com)

- Penn World Table (PWT). Provides purchasing power parity and national
income accounts converted to international prices for 188 countries over

the last six decades. (httt://pwt.econ.upenn.edu)

- World Bank, World Development Indicators (WDI). Provides more than

900 indicators for 152 economies. (www.worldbank.org/data)

- International Monetary Fund (IMF), World Economic Outlook Databases
& International Financial Statistics (IFS) provide more than 32000 time

series covering more than 200 countries. (www.imf.org)

- Organization for Economic Co-operation and Development (OECD)

(www.oecd.org)

- European Central Bank (ECB)
(http://www.ecb.int)

Consider the following panel data model

yit=ai+/8>(it+gita (1)

10



Note that i=1,.,N denotes the individual, firm, country and so on, and
t=1..T is the time period. The term «; denotes unobservable individual
specific effects and ¢, denotes the remainder disturbance assumed to be

independently and identically distributed (IID).

Advantages of panel data

1. More data compared to time series or cross-sections, more
variability/more informative data as variables vary over two dimensions,
less collinearity among regressors, and more efficiency. Time series data
suffer from multicollinearity. This is less likely in panel data since the
cross-section dimension adds a lot of variability. In fact, the variation in the
data can be decomposed into variation between cross sections and variation

within cross sections. The former variation is usually bigger.

2. Reduces the data needs. The richness of panel data obviates the need for
data on things that may be difficult or impossible to measure (unobserved

heterogeneity).

Example: Wage regression

wage, = « + geduc,+yabil +¢&,

where abil, denotes innate ability (constant through time), which cannot be
observed. Thus, run OLS

wage, = a + peduc,+w,, where w, = jabil +¢,
If innate ability is not correlated with education, then jabil, is just another

unobserved factor making up the residual. It is true that OLS will not be a

Best Linear Unbiased Estimator (BLUE), because the error term

11
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w, = jabil +¢, 1is serially correlated (see below). Notice that OLS would be

consistent, however, and the only substantive problem with relying on OLS
for this model is that the standard formula for calculating the standard
errors is wrong.

However, the problem is that innate ability might be correlated with
education, in which case

E(w,/educ,) # 0 = Cov(educ,,w,) =0

OLS will be inconsistent (unbiased regardless of the sample size). In

particular, it can be shown

N Cov(educ,,abil,)

1- OLS —
Plim /5 p Var (educ,,)

which shows that the OLS estimator 1is inconsistent unless

Cov(educ,,abil;) =0. If Cov(educ,,abil) >0 (positive correlation), then there is

an upward bias. If the correlation is negative, we get a negative bias.
However, panel data can solve this problem by applying particular
transformations to the data, which is not possible using cross-sectional
data. For instance, write the model at time t-1
wage,, = a + feduc,_,+(yabil+¢, )

wage, = o + feduc, +(jabil +¢,)

Subtracting the first from the second equation yields
(Wageit_wageim) = /B(educit_Educit—l) + (git_git—l)
Awage, = fAeduc, +As;,

Innate ability has been eliminated because it does not vary through time.

12



Properties of Ag,

1. E(Ag,)=0

2. Var(Ag,) =Var(¢,+(—¢,_)) =Var(g,) +Var(-¢,_) =Var(g,) + (-1)°Var(e,_) = 20

3. Cov(Ae,,Ae, ) =E(Ag,Ae, ) = E(e—¢, )& €)= —E(&r)=—0"
Cov(Ag,Ag, ,) = E(AgAgy, ) =E(e—€4 )i Ei3) =0

Cov(Ag,Ag, =0, s=2

it—s

(First-order serial correlation!)

OLS will be consistent, though inefficient due to autocorrelation. This is

the so-called first-differenced (FD) estimator.

3. Controls for parameter heterogeneity (related to the previous issue).
Consider the following model:

wage, =+ pgeduc, +¢,

where the intercept term is specific to each individual (heterogeneous).
What happens if we ignore this heterogeneity and mistakenly assume that
the intercept is the same across individuals.

wage; = (¢ — p) +a+peduc, +&,

wage, = u + peduc,+w,,  where w,=a—u +¢&,

If the individual-specific intercepts are correlated with education, we will
have

E(w,/educ,) # 0 = Cov(educ,,w, ) # 0

Thus, OLS will be inconsistent.

-- See figures below --

13
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Notice how closely related are the problems of omitted variables
(individual-specific intercepts, which are time invariant) and unobserved

heterogeneity (time invariant). You can always argue/set a,—u = yabil, .

16



1.2 The Fixed Effects ("Within') Estimator

One way to estimate the model is to assume that each «;, is a fixed/constant
parameter to be estimated (just like g). The «; thus capture the effects of
those variables that are peculiar to the i-th individual and that are constant
over time. This is called the fixed effects (FE) estimator. We may either

allow in the model for individual-specific dummies,

Yi=ait PXi+Ei (&, s 1ID)

Yi= (Z’j\‘:lajd j)+ﬂxit+git (2)

We thus have a set of N dummies in the model. The parameters «,,...,a,
and g can be estimated by OLS. It is straightforward to see how to test for
whether the panel approach is really necessary at all. In other words, to test
whether all of the intercept dummy variables have the same parameter,
Hya=a,=..a, (N-1 restrictions)

If this null hypothesis is not rejected, the data can simply be pooled
together and standard OLS employed. If this null is rejected, however, then
it is not valid to impose the restriction that the intercepts are the same over

the cross-sectional units and a panel approach must be employed.

When N is large it may be numerically unattractive to have a regression
with so many parameters to estimate. Fortunately, one can compute the
estimator in a simpler way. It can be shown that exactly the same estimator
for p is obtained if the regression is performed in deviations from
individual means. Essentially, this implies that we eliminate the individual

effects «; first by transforming the data. To see this, note

Yi=a+pX+&,

17
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where y=T7'> y, and similarly for the other variable. Consequently we

can write

(YY) = (@i—a) + B(Xy=X) + (£;—E)
(YY) = B(X=X;) +(£,—E) (3)

This regression involves demeaned variables and therefore does not include

the individual effects «,. So, transform the data in terms of deviations from
individual-specific averages (Within Groups transformation is called

because the subtraction is made within each cross-sectional unit) and

remove the individual-specific (intercepts),

Both (2) and (3) can be estimated by OLS. The estimator is called fixed

effects (FE), least squares dummy variables (LSDV) or within estimator.

The fixed effects estimator focuses on differences 'within' individuals. Put

differently, it explains to what extent y, differs from y, and does not
explain why vy, is different from y,. Note the assumptions about g impose

that a change in x has the same (ceteris paribus) effect, whether it is a
change from one period to the other or a change from one individual to the

other.

The OLS estimator for g

— ZN Zt(xit_ii)(yit_yi)
ZN Zt(xit_ii)z
ﬁFE - (ZN Zt (Xit_xi)(xit_xi),)_IZN Zt (Xit_xi)(yit_yi)

(if BT was a vector)

BFE

Assumption 1: unobserved terms «, can be freely correlated with x .

18



Assumption 2: E(x,&,)=0 for s =1, 2, ... T (strict exogeneity). Clearly,

we cannot include y, , as a regressor.

Properties of (¢,-¢)

1. E(¢,-2)=E(s)-E(Z)=E(s) - E(@) =0

&yt tEi

2. Var(e,—&,) =Var(e,) +Var(-¢,) =Var(g,) +Var(- )

=Var(e,) +Var(—_|_l (&i+...+&;7)) =Var(s,) + T%Var(giﬁ... +&i7)

BT B TR I Ul +1o,
& T2 & & T & T

3. Cov(g,—€,&, —) =0, since &, 1s |lID across individuals and time.
Therefore, The FE estimator is unbiased and efficient.

We now see why this estimator requires strict exogeneity: the error term

_ Eirten +E; . :
git—gi:git—% contains all residuals whereas the transformed

explanatory variable(s) contains all values of the explanatory variable(s)

X Xy

— X=X, = . Hence, we need E(x,&,)=0 fors=1, 2, ... T; or there

will be endogeneity bias if we estimate by OLS.

In the within estimator, the individual-specific intercepts can be estimated

as,

Note that as T — o, the FE estimator of both «,(i=1,.,N) and g is

consistent. However, if T is fixed and N —» o as is typical micro panels,

19
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then only the FE estimator of g is consistent. The FE estimator of «, is

inconsistent because the number of individual-specific intercepts increases

to infinity as N — 0.

The covariance matrix for ™ (vector)

Var(87) = o2(3, 3 (%=X (% =%,)')

with

. 1 N, AEEL2

(752 = N(T —1) ZN Zt(yit_ai_x itﬁFE)

i
N =D

It is possible to apply the usual degrees of freedom correction in which case

ZN Zt (yit_yi_(xit_Yi)’ﬁFE)z

the number of explanatory variables is subtracted from the denominator.
How many degrees of freedom? NT-N-k where k is the number of
explanatory variables. Note the least squares dummy variables (LSDV)
method estimates N+k parameters, or put differently, the within estimator
uses a further N degrees of freedom in constructing the demeaned variables

(we constructed N individual means).

Under weak regularity conditions, the fixed effects estimator is

asymptotically normal, so standard inference can be applied.

The within estimator regression will give identical parameters and standard
errors as would have been obtained directly from the LSDV regression, but
without the hassle of estimating so many parameters. The disadvantage of
within estimator regression, however, is that we lose the ability to
determine the influences of all of the variables that affect the dependent

variable but do not vary over time. For example, consider

20



pol,=a+pGDP +/neq;+¢,,
Averaging over time

pol.=a+BGDP +xneq,+z,
Consequently we can write

(pol it_Wi) =(a-a)+ ﬂ(GDPit_Cﬁ)i )+ y(Ineq;—Ineq;) + (&,—¢)

(pol it_mi) = ﬂ(GDPit_Cﬁ)i) +(&i€)

1.3 The Between Estimator

An alternative to the within estimator (fixed effects) would be to simply
run a cross-sectional regression on the time-averaged data, which is know
as between estimator,

V=a+X+e,,1=1,...,N

An advantage of the between estimator over the within estimator is that

this averaging often reduces the effect of measurement error in the

variables on the estimation process
1.4 The First-Differenced (FD) Estimator
Another way to estimate the model is to use the first-differenced estimator

Ayit: ﬂAXit+A8it

Clearly this removes the individual fixed effect, and so we can obtain

consistent estimates of B by estimating the equation in first differences by

OLS.

Assumption 1: unobserved terms «, can be freely correlated with x, .

21
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Assumption 2: E(x,¢,)=0 for s =1, t-1. This is a weaker form of strict

exogeneity than what is required for fixed-effects (FE), in the sense that

E(x,&,_,) =0; for example, is not required). Thus, if there is feedback from
¢, to x, that takes more than two periods, FD will be consistent whereas

FE will not (hence weaker form of strict exogeneity).

You now see why this estimator requires exogeneity: the error term
contains ¢, and ¢, ,, whereas the vector of transformed explanatory
variable(s) contains x, and x, , : Hence, we need E(x,¢,)=0 for s =1, t-1;
or there will be endogeneity bias if we estimate by OLS.

Important: FE versus FD.

So, FE and FD are two alternative ways of removing the fixed effect.
Which method should we use? In general, FD is consistent but inefficient

(due to autocorrelation).

(1) The FD and FE estimators are the same if T=2 (i.e. we have only two

time periods).

Proof

FD: (yi—Yio) = BOG—Xi) + (6640

Note that there is just one cross-section!

T=2  (yi,-yy) = B(X—X) + (6.-€,)

We cannot have autocorrelation. Thus, OLS i1s consistent and efficient.

FE: (y;—V) = B(X—X) +(&i—€)

22



Eitép,

T=1 (yil_%):ﬂ(xn_%)*{gn_ )

YimYio\ _ g Xu=Xir Eirfi
(—2)ﬂ(2)+(2)

Eitép,

=2 (Yiz_%):ﬁ(xiz_%)"‘(‘?iz_ )

Yiom¥iy _ pXia=Xir €ir~€i
(—2)5(2)+(2)

So, one of the 2 cross-sections 1s redundant.
(i1) However, for T>2, the FD and FE estimators are NOT the same.

Under "classical assumptions", i.e. ¢~ 1ID(0,57), the FE estimator will be
more efficient than the FD estimator (as in this case the FD residual ¢, will

exhibit negative serial correlation, E(As,A¢, ) =-0c).

Under the null hypothesis that the model is correctly specified, FE and FD
will differ only because of sampling error. Hence, if FE and FD are
significantly different - so that the differences in the estimates cannot be
attributed to sampling error - we should worry about the validity of the

strict exogeneity assumption.

Note that strict exogeneity rules out feedback from past ¢, shocks to
current x,. One implication of this is that FE and FD will not yield

consistent estimates if the model contains lagged dependent variables
(dynamics models). In this case, we may be able to use instruments to get

consistent estimates.

23
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1.5 An extension of the Fixed Effects Estimator
Consider the a fixed effects model with a two-way error component

Y=o+ A+ Pr+ey, (& 18 11D)

Yit= (Z,j\l:la id ijd )+ (ZtT:l/ltdtﬂme) + P teir

Note that A, denotes is individual-invariant and accounts for any time-

specific effect that is not included in the regression. For example, it could
account for strike year effects that disrupt production, oil price effects,

macroeconomics and financial crisis effects, etc.

However, the number of parameters to be estimated now would be k+N+T,
and the within transformation in this two-way model would be more

complex.

1.6 The Pooled OLS Estimator

Consider

Y= P Hatey)

where I have put (a;+¢,) within parentheses to emphasize that these terms

are unobserved and are will not be estimated separately.

Assumption 1: unobserved terms «; are uncorrelated with x, .

Assumption 2: E(x,&,)=0 (contemporaneously uncorrelated). This is an

even weaker form of strict exogeneity than what is required for FD and FE

estimators in the sense that E(x,e, )=0; for example, is not required).

Clearly under these assumptions, wo-°

o =q.+¢, will be uncorrelated with x,,

24



implying we can estimate S consistently using OLS. In this context we

refer to this as the Pooled OLS (POLS) estimator.

25
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1.7 Random effects
Another way to estimate the model is to assume that each «; is a
random draw from a common distribution with a finite mean and finite
variance (i.e. random factors II1D distributed over individuals). Re-write,
Yie=ait+PXigt+eit
Yir=ai—Ui+ X +Ui+€
Yie= (@) + B +(Ui+&q)

Yie=a + P+ Wy

u;~ ID(0,52), &~ 11D(0,67), E(ujg;) =0

and u, measures the random deviation of each individual’s intercept term

from the “‘global’ intercept term « .

Assumption 1: unobserved terms u; are uncorrelated with x;, .

Assumption 2: E(x,&) =0 fors=1, 2, ... T (strict exogeneity).

Note that this combines the strongest assumption underlying FE estimation
(strict exogeneity) with the strongest assumption underlying POLS
estimation (no correlation between unobserved effects and the explanatory

variables).

26



There are no dummy variables to capture heterogeneity in the cross-sectional

dimension. Instead, this occurs via the u, terms.

Note: Under the above assumptions:

1) POLS will be consistent but inefficient because of omitted random effects

problem u; or because the composite error term (u;+¢,) iS autocorrelated.

Explores both the within and between dimension of the data.
2) FE will be consistent but inefficient due the fact that it explores only the
within dimension of the data.

3) FD will be consistent but inefficient due to autocorrelation.

Properties of composite error w,=u;+¢;

1. E(w,) = E(u)+E(s) =0 Vi, vt

2. Var(w,,) =Var(u;+&;) =Var(u;) +Var(g;) = 6. + 62 = 52 Vi, vt

3. Cov(W,, Wi ;) = E(Wy Wy, 1) = E(Uj+&;) Ui+ o) = E(UZ +U €480 +63E 1)
= E7) +E@U&iy) + E(equ) + E(epeiy)
=62+0+0+0=07 Vi, vt
Cov(W,, Wy o) = E(WyW;, ) = E(U+e)Uitey )=o),  s>1 Vi, vt

(Higher-order serial correlation!)

That is, the correlation of the error terms over time is attributed to the

individual effects u,.

27
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Also note that if o2 is high relative to &? the serial correlation in the error

terms will be high. As a result the conventional estimator of the covariance

matrix for the OLS estimator will not be correct.

Thus, the composite error is serially correlated, which implies that the
optimal (most efficient) estimator should be a Generalized Least Squares
(GLS) estimator. This is the so-called random effects (RE) estimator for

panel data.

Derivation of the GLS-random effects estimator
(based on Hsiao C. (1986), Analysis of panel data, Cambridge University Press)

For individual i all errors can be stacked as
U; i +e;
where ¢=(11,...1)’ of dimension T and ¢=(¢;....&7)

Var(u, i;+¢) = Q =01, I, +0°1

For each individual i we transform the data by premultiplying y.=(y,,....Vir)’

Thus, the GLS estimator is given by

D S

6' u

2

(Z 2 (X Y9 + — Er STy (K=X)(¥-Y)

N—

28



Xi .
where x = % is the overall sample average.

2
o
2 - 2 _)O
o.+To;

ﬁGLS = (ZN Zt(xit_xi)(xit_xi),)_lz,\] Zt(xit_yi)(yit_yi) = ﬁFE

When T — « the term

It can also be derived

ﬁGLS :AﬁA’B +(l _A),éFE

where ﬁB=(ZN(xi—i)(¥i—i)')‘lzN(xi—x)(yi—y) is the between estimator for
. Itis the OLS estimator in the model for the individual means

Vi=a+ pX+(u+&), 1=1...,N

where A is the weighting matrix that is proportional to the inverse of the
covariance matrix of ®. Thus, the GLS estimator is a matrix-weighted
average of the between estimator and the within (fixed-effects) estimator,

where the weight depends upon the relative variances of the two estimators.

The between estimator ignores any information within individuals. The GLS
estimator, under Assumptions 1-2, is the optimal combination of the within
and between estimators, and is therefore more efficient than either of these

two estimators.

29
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The RE estimator involves (as any other GLS estimator) running OLS on a
“suitably transformed” model. The term “suitably transformed” means that
the transformed model has serial uncorrelated errors. Therefore, OLS is the
best linear unbiased estimator (BLUE) in this case. Averaging over time, in
terms of unit means,

Yi= o + BXi+W,

2
O,

+T05

Multiply by &, where 6=1-_|—
06‘

&,= o + % +6W,

Subtract this equation from the initial one. The transformed model is given
by
(Yi—i) = a(l—0) + B(X;—6K;) + (Wi, —EW; )

It can be shown
COV(Wit —OW; ,\W;_—OW; ) = E(Ui(l— 0) +&;—0e; )(Ui(l— 0) +&_—0k; ) =0

2

Note that (i) if T -, then —2=— 0 and 6 -1 and the RE (GLS)

o.+To;
estimator tends to the fixed effects (FE) estimator (micro panel versus macro

panel).

The above equation is very interesting because it involves quasi-demeaned
data on each variable. In other words, rather than subtracting the entire
individual mean (which is what the fixed effects does), the transformation

subtracts only some fraction of the mean, as defined by ¢. Notice that this
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implies that unobserved heterogeneity (as reflected by the individual-
specific time-invariant effects) is not fully eliminated because
(W —6W;) =u;(1- ) + (&;—0¢))

As usual, GLS is unfeasible because we do not know the parameter 4. So, ¢
has to be estimated first. This involves estimating ¢} and o?. One way to

do that, the simplest perhaps, is to use POLS in the first stage to obtain

estimates of the composite residual w, and its variance 5 . Based on this,
we can calculate o7 as the covariance between W, and W, , (for instance),
and then calculate

626362 (oh =07 +07)

We can then plug 62,62 into the formula for ¢

) ~2
0=1- | %

G2+ T62
Then, estimate the transformed equation.
(Yit—éyi) =a(l- é) + ﬂ(xit_ézi) + (Wit—éwi)

This is the Feasible Generalized Least Squares (FGLS) estimator.

Also, another consistent estimator of & is obtained from the within

residuals
&2 _ 1 Z Z ( _& _Xr B\FE)Z
e N(T _1) N t ylt i it
~2 1 9 (v _v\ AFEY?
O, = N(T —1) ZN zt(yit Vi—(X=X))'B7)
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Under weak regularity conditions, the random effects estimator is

asymptotically normal with covariance matrix given by

2

T 2 T (Yi—Y)(Yi—Y)'J_

2
o.+To,

(o}

Val’(ﬂAGLS) = GE[ZN Zt (X=X (X =%;) +

2
%0, the random effects estimator is more efficient than

As long as
o.+To;

the fixed effects estimator (T (X,—X)(X,—X)" is positive definite). The gain in
efficiency is due to using the between variation in the data (x,—x). The

covariance matrix is routinely estimated by the OLS expressions in the

transformed model given above.

1.8 Fixed Effects or Random Effects

- Testing for non-zero correlation between the unobserved (individual) effect
and the regressor(s): FE versus RE. The RE estimator requires that the
individual effect must be uncorrelated with the regressors for it to be
consistent. If this assumption is not tenable, the FE estimator should be used.
In the present context, the FE estimator is consistent regardless of whether

«, 1S or is not correlated with x, , while the RE requires this correlation to be

zero in order to be consistent. Strict exogeneity is assumed for both models.

The Hausman statistic is computed as

H = (87 - B™) Var(87) -Var(8™) (57 - )

using matrix notation. Note that because the random effects estimator is

efficient under the null
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Var (S — ) =Var (™) -Vvar(5™)

Under the null hypothesis,

plim(B° - B) >0

this test statistic follows a chi-squared distribution with M degrees of
freedom, where M is the number of time explanatory variables in the model.
In the case of a single slope parameter, the Hausman statistic is given by

_ (éFE _IéRE)ZA o
Var(B) -var(s¥)

Failing to reject the null hypothesis implies that the individual effects are
uncorrelated with the explanatory variable(s). Thus, we may decide to use
the RE model in the analysis on the grounds that this model is efficient. The
null hypothesis is that both models are consistent, and a statistically
significant difference is therefore interpreted as evidence against the RE

model.

Also, in practice when computing the covariance matrix

Var (S - ) =Var () —Var ()

may not be positive definite in finite samples, such that the inverse cannot be

computed.
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- Is the key explanatory variable constant over time? In this case, the FE
estimator may not so appropriate because the within transformation will
eliminate this variable.

W_im,=a;+ped;+d _h+¢;

W_im=a;+ped +ed _h.+&,

(w_im;—w_im;) = Bed;—ed ) + (&)

On the other hand, the RE estimator can control as many time-constant

variables as possible.

- It is often argued that the RE model is more appropriate when the cross
sections in the sample can be thought of a having been randomly selected
from one population, but a FE model is more plausible when the cross
sections effectively are the whole population (e.g., stocks traded on a

particular exchange).

- Since there are fewer parameters to be estimated with the RE model (no
dummy or within transformation to perform) and thus degrees of freedom

are saved, the RE has an advantage.

- Are inferences made conditional on the effects that are in the sample or

unconditional?
The FE estimator implies that inferences are made ‘conditional upon the

effects of the model’. This means that we can only speak about those

individuals included in the sample. That is, it essentially considers the
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distribution of y, given «,, the the fixed effects can be estimated. This

makes sense intuitively if the individuals are ‘one of a kind' and cannot be
viewed as a random draw from the same underlying distribution (e.g.,
countries, large companies, etc). Inferences are with respect to the effects

that are in the sample.

On the other hand, the RE estimator implies that inferences are made
‘unconditionally’. Basically, this is because in this model there is an implicit
assumption that all individual effects come from a common distribution.
Thus, the nature of the effect of any individual not included in the sample
can be predicted. In fact, this question is related to the size of N. If N is

small, the FE may be preferred, otherwise, the RE model is more sensible.

Thus, the random effects method allows one to make inference with respect
to the population characteristics. One way to formalized this is the random

effects model says
EQYulXi) = X,

while for the fixed effects
E(Ynlxitvai) =a i+ X

The parameter g in the two conditional expectations is the same only if
E(alx,)=0. So, the reason why one may prefer fixed effects is that some

interest lies in the alphas, which is the case if the number of individuals is

relatively small and of a specific nature.
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1.9 Mean Group (MG) estimator
Consider the following model

Y=t Xy tey
Assumption: Parameter heterogeneity can be freely correlated with x, .

Suppose we are interested in the average effect across individuals (the mean

impact of «; and B, on y,). The Mean Group (MG) estimator estimates the

individual-specific time series by standard OLS and then averages these

coefficients over individuals.

1
ﬁMG _ Wzi’\ilﬂims

The MG estimator is consistent and asymptotically normal for N — 0.

The variance of the MG estimator is given by

Var(ﬁMG) _ ;Z:\‘:l(ﬂiew _ﬂMG)Z
N(N -1)

Standard inference applies.

The advantage of MG estimator is that we do not calculate the variances of
the estimates for each individual (in this case, we would need to account for
cross-sectional dependence, if there is any). Instead, we compute the
variance of the estimates over individuals. A further advantage of MG is that

we can accommodate unbalanced panels.
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1.10 Dynamics Panel Data Models

An autoregressive panel data model, AR(1)

Yiie= Wit ity lyI<1

The fixed effects estimator for y

}'/\FE _ Zi’\ilzz—:l(yit_yi)(yit—l_yi,—l)/NT
> ViV ) /NT

where yi:T_lth:lyit and yi,—lzT_lz;r:Iyit—l .

estimator yields

N T _ _
PP =y ZH ZH eV —Yi)/NT

ZiN:I Ztll (yiu_yi,,l)z /NT

It can be shown

: 1 = v
plim (WZL Ztll(git_gi)(yit-l_yi,—l)] =
N —c0

Lo, T-D-Ty+y"

Substitute AR(1) into the

#0

T -y

For fixed T and N >« , the fixed effects estimator is biased and

inconsistent!

Example

» SIGMA=1;
» T=5;

» G=0.2;
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» BIAS=-((T-1)-T*G+G"T)/((T"2)*(1-G)"2);
» BIAS;
-0.18752000

More persistent process
» G=0.8;
» BIAS=-((T-1)-T*G+G"T)/((T"2)*(1-G)"2);
» BIAS;
-0.32768000

Larger T
» T=100;
» BIAS=-((T-1)-T*G+G"T)/((T"2)*(1-G)*2);
» BIAS;
-0.047500000

Note inconsistency is not caused by anything we assumed about the alphas.

The problem is that Cov((s,~&),(Yy,~V; 1))#0.

2 T
However, if T >« , then —_?—;(r 8 T;/zﬂ/ —0! So, fixed effects is
-7

consistent when N,T —» «.

Take first difference and calculate

Vi~ Y= 7YY~ Yio) + (€€ )
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OLS is not consistent since Cov(y, &, )#0 even when T —oo .

This

transformed model suggests IV estimation. Given g~ 1ID(0,57) (no

autocorrelation), for example, use the instrument y, , as
COV((yit—l_Yit—z):yit—z) #0 (relevant)

Cov((&=£1)Yu»)=0 (exogenous)

Thus, the IV estimator

v _ 3 3 Vi (Ve Vi)

ZL ZLZ Yia(Yier—Yieo)

A necessary condition for consistency

. 1 N T _
p llm( NT - 1) Zi:l zt_z(git_git—l)yit—2j =0

for either N > o or N,T > .

An alternative estimator uses the instrument (y, ,—-v, ;) as

Cov((Y=Yis)(Yio—Yis)) % 0 (relevant)

COV((git_git—l)’(yit—z_yit—S)) =0 (exogenous)

AV Z,N:l z;r:3(yit—2_yit—3)(yit_yit—l)
A —
ZH th3 Vi Yie) Vi Yieo)

which is consistent if

. 1 _
phmmz,\, Zt(git_git—l)(yit—z_yit—S) =0
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. 1 N T _
p hm( N (T ~ 2) Zi:l Ztﬁ(git_gitq)( yitz_yit3)j =0

Which estimator do we use?

Use both adopting a GMM.

. 1 N T _ 3 _
Note p hm[ N(T —1) ZH thz (&—&ir) yitzj = E((git Ei)Yito ) =0

. 1 N T
Y hm( N(T —2) Zi=1 Zt=3(8it_git—l)( yit—z_yit—3)j = E((6=& )(Yia=Yies)=0

are moment conditions. Both IV estimators impose one moment condition in
estimation. Generally, imposing moment conditions increases the efficiency

of the estimation.

Arellano and Bond (1991, Review of Economic Studies).
Example T =4
In period 2 E((g,-¢,)Y;,)=0

In period 3 E((¢,-£,)Y:,)=0, E((ei-€1)¥i0)=0

In period 4 E((5i4_5i3)yi2): 0, E((5i4_5i3)y”): 0, E((Si4_gi3)yi0) =0

GMM estimator
Define the vector of transformed error terms
€&y

As=]| ...

Eir€ira
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and the matrix of instruments

(Vi) 0 20
Zi: 0 (yiO’yil) -0

0---0---0 (yiO"“’yiT—Z)
each row contains the instruments that are valid for a given period. Thus, we
write compactly
E(Z'Ag;)=0

E(Z’i(Ayi_yAyi,—l))z 0

It can be shown that the GMM estimator is consistent and asymptotically

normal.

An autoregressive panel data model with exogenous variables
Yi= BXit Wi oty

Use GMM. Take first difference and calculate
Yi—Yia= B =X ) 7 (Vi — Vi) + (&€

Ay it— ﬁAX it+7Ayit—1+Agit

If x, is strictly exogenous, we have

E(Ax,Ag,) =0, Vt
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and the matrix of instruments

(yioaAXiz) 0.. ...0
7210 (iYudxy) -0

0:-:0---0 (Vigs-sYir 255 AXir)
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Chapter 2: VAR Models

Since Sims (1980) critique of traditional macroeconometric
modeling, vector autoregressive (VAR) models are widely
used in macroeconomics. In the traditional approach the
typical question asked is ‘What is the optimal response by
the monetary authority to movements in macroeconomic
variables to achieve given targets?’ Sims argued that a VAR
model is an unrestricted model that treats all variables as
endogenous “without restrictions based on supposed a

priori knowledge” derived from theory.
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2.1 Bivariate Structural Model

Let y,, z, endogenous in bivariate first order structural
VAR(1)
y=b,-b.z+yy. +rz_ +te, (1)
z=b,-b,y+r.y_ +v.2_ +e, (2)
assumptions (a) y,, Z, stationary processes (b) €, ¢,
white noise processes ¢ ~WN(0,0)), £,~WN(0,0;)
(c) ¢, and ¢, are uncorrelated.
There are feedback effects between y, and z,

Time lag effects

y, — time lag effectof z_ on Y,
y, — time lag effectof y,_ on Z,

Contemporaneous effects

—b , — contemporaneous effect of z, on y,

—b,, — contemporaneous effect of y, on z,

Derive reduced-form VAR(1)
(D, 2)=
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yt b1o O b12 yt 711 }/12 yt—l gyt
= — + +
Zt bzo b21 O Zt 721 7/22 Zt—l gzt
1 b12 yt b1o 7/11 7/12 yt—l gyt
= = + +
b21 1 Zt bzo 7/21 7/22 Zt—l gzt

or

Bx=I',+I" X_,+¢&

where
1 b, b 12 &

B — , Xt: yt , 1—10: 10 , 1—11: ?/11 }/ ; 8t:
b 1 Z, b, V.,V g

Premultiply by B™

X, =A,+AX_+e

where A=B'T,, A=BT,e=B"¢

a'10 a11 a12
Let AOE R AIE p—
a20 a21 a22

yt:a10+allyt71+a Z +elt

12 7 t-1

Zt:a20+a21yt71+a Z +e2t

22 7 t-1

but
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21

B- 1 1 _b12 1 l_blz
“det(B)| b 1 | 1-b,b,|-b 1
transformed errors (reduced-form errors)

e=Bl'g= 1 |: 1_b12:||:8yt:|
t " 1-b,b,| b 1 e,
B 1 eyt =Dy 4
1-b,b,, _b218yt T &y

&, b,e R N

12 7zt 21 7 oyt

elt_—’ ezt_
1-b_ b 1-b_ b

12 721 12 721

SO

Properties of reduced-form errors

Mean

Ee,)=

o b E(s,~b,&,)=0,since E(s,)=E(s,)=0

12 721

Variance
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2 &y blzgzt 2
Var(elt): E(elt_E(elt)) = W

1
- ~2b.e & +(b
(-b,b,) - On PPt 0a))
1 2
:(1 b12 21) (E(gyt)_zble(gyt Zt)+b E(th))
_o, thioy
(1-b,b,)"

since Cov(e ¢ ,) = E(e —E(e))(e,—E(g,)
- E(gytgzt) = O

Autocovariance
Cov(elt ’el,t—i ) = E (en - E (elt ))(el,t—i _ E (el,tfi ))

(¢ yt_b12 £ )& yt—i_b12 gzti)j
(1 _b12 b21 )2

=E(€.8,,)= E(

B 1
(1-b,b, )
=0 fori1#0

E(¢,6,b,6,6, 0,66, 0 e,.6,)

12 ytztl 12€ 2 yt-i 12€ 2t at-i
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since
E((C,‘ ytgyt—i) - _blz E(é‘ ytgzt—i = _blz E(gztgyt—i) - b122 E(é‘ zt |) O
o.+blo’ o, +b;0,
e, ~WN(0, 272, e, ~WN(0, - L)
(1 _b12b21) (1 b12b21)

Cross-correlation (covariance)
COV(eM €, ) =E (elt - E(en ))(ezt -E (eZt ))

:E(m b,.£,)(z,b, yt)j
(1 b12 21)

1
- (1 _b12bz1)2

E(gytg b218yt blzgzt +b, b2lgzt€yt)

-b, o’ -b,o;

" (1-b,b,)

The errors in the reduced-form equations are correlated!

Only when b _=b, =0, there is no correlation.
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Variance-covariance matrix of the errors

e E(e2) E(e.e
1t j(elt ezt): ( 1t) ( 1t 2t)

L=E(ee'))= E( )
e2t E(e2telt) E(eZt)

_{Var(eu) Cov(elt’EZt):| 012 O,

Cov(e,,,e,) Var(e,,) o O,

2.2 Multivariate Structural Model

: : : : : ,
Consider K-dimensional time series vector X,= (Y ;.--»Y k()

generated by reduced-form VAR(1)
ylt:a10+allylt—l+a12y2t—l+"' +alK th—l+elt

y2t:a20+a2ly1t—l+a22y2t—l+'" +a2K th—1+e2t

th:aK0+aKlylt—l+aK2y2t—l+"' +aKKth—l+eKt
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ylt a10 allaIZ"'alK W ylt—l elt
- y2t — a20 + a21a22 "'aZK y2t—1 + e2t
_th_ _aKO_ _aKlaK2"'aKKJ_th—1_ _eKt_

X,=A,+A X _+€,

ylt alO a11a12"'a1K elt
y a a.a,..a e
Where Xt: 2t : A0: 20 , Alz 21 7°22 2K : et: 2t
_th_ _aKO_ _aKlaK2'"aKK_ _eKt_
e ~WN(0,%)

! !
Ele,]=0, E[e,e’.]=2%, and E[e e’ ]=0 for s#t where
variance-covariance matrix X is time-invariant, symmetric,

non-singular
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S=E(e,e)=F * |ex ex ... e.]

_eKt
_ T _
E(e;) .. E(epe)| |0 - O
= E(eZtelt) E(eZteKt) = 621 G2K
_E(eKtelt) E(e}it) 1 1O« - Gi ]

More generally, the structural VAR(p)

Bx=I',+I" X_+...+I" X _ +¢&,

where B is the (K x K) matrix of contemporaneous

(structural) effects, I, (j=1,...,p) are (K x K) matrices of

(structural) lagged coefficients, and ¢ 1s the vector of

structural errors.

Reduced-form VAR(P)

X=A,+A X +A X ,+..+A X _ +e,
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where A =BT, (j=1..,p), (KxK) coefficient matrices

-1
e=B ¢,

Y1t

' Y2t
X =E(ee’)=E [gylt Evyo .. gth]

| 7 YKt |
E(g;,) - E(e,8,) | |2 .. 0
_ E(g)’2t8ylt) E(gyztgth) _ 0 .. 0
2
_E(gth8y1t) E(ngt) 4 L O .. O-YK_

¥ _=E(g,&’,) — diagonal

X = E(ete,t) = E(B_lgt(B_lgt)’)
—E(B'¢e'(B™))
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=B'E(¢,&')(B™")" — non-diagonal
-B"'s, (B

=B7'1(B™")’, if X =I, identity matrix

>=B7(B"Y
or
T =Var(e,)=Var(B'¢)
=B Var(¢)(B™")
=B"'%,(B™)
=B7'1(B™")’, if X _=I, identity matrix
>=B"(B")
2.3 Stationarity
Vector version of weak stationarity
Mean
E(x)=nu

where y=(u,u,,....,pt,)" independent of t

Variance-covariance
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El(x,—)(x—w)'] =2,

where X (K x K)) independent of t

Conditions for stationarity

Consider univariate AR(p) (for illustration)

y=0+Qy +..+@ Yy +U

= ¢(L)y,= 5+,
N2)=1-9z—..—¢ 7’

factorise
=(1-42)x(1-4,2)x...x(1-4,2)
roots

|
Z=—,1=1,..,
iy p

stationarity and stability requires inverse of roots of pth

order polynomial to lie inside unit circle

Al<1(or 2> 1), i=1,.,p
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Infinite Moving Average (IMA) or Wold representation

Let p(L)" = f(L)=X7, f L’ then
y=¢(L) (6+u))
= Y=¢) o+, fu._

= Y= +>,fu.

Bivariate VAR(1)
X,=A,+AX_+e
= X,—AX_=A,+e
= X,—A Lx =A +e,
= (I A L)x =A, +e,
(I-AL)"?

pre-multiply by (I —A L)

l-a,L —-a,L
| —A L=
-a, L I-a,L
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Determinantal equation
det(l —A L)
= (1 _all L)(l _a22 L) _alz a21 L2

=1-(a,+a,)L+(a,a,-a,a,)L

= (1-22)x (1-4.2)

stationarity and stability requires inverse of the roots of 2

order polynomial to lie inside unit circle
A< 1, ]4,0< 1 (or z,)> 1, [z,> 1)

If one of the two roots is one then both y,, z, are non-

stationary
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2.4 ldentification

Consider a bivariate structural VAR(1)
y=b,b.z+yy. +r 2z +e,
z=b,-b,y+y.y. +v.2. . +¢,

The structural system is not directly estimable by OLS
since

Cov(z,,&,) # 0 and Cov(y,,&,) #0

implies biased and inconsistent estimates!

Consider the reduced-form VAR(1)

yt:a10+allyt—l+a Z +elt

12 7 t-1

Z=a,+a,y, +a,Z +€,

22 " t-1

here OLS is applicable.

Recover all information present in structural model?

Structural model is underidentified. Why?
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However, if we set b, =0 =
yt:blo_blzZt+7/11yt—1+71zzt—1+gyt

Zt:b20+721yt—1+7222t—1+gzt
yt blO_ O b12 yt 7/11 7/12 ytfl gyt
= — + +
z.| Iby] [0 Oz | |7,7=]2.] Le.
1 b12 yt_ blO 711 7/12 yt—l gyt
— = + +
01 Zt i bzo 7/21 7/22 Zt—l 8zt

1 bn_ 1 -b,
let B = = B =
01| 0 1

Premultiply by B™

or

p—

yt 1 _b12 blO 1 _b12 7/11 V1 yH 1 _b12 gyt
= + +
Zt 0 1 bzo 0 1 7/21 Y 2 Zt—l 0 1 €y
or
Y= 0,-0,0,0)+ (7,0, 7)Y (DL D)z e yt_blz &)
Zt:bzo+7/21yt—1+7/222t—1+gzt

or

yt:a10+allyt—l+a Z +elt

12 7 t-1

Z=a,+a,y, +a,Z +€,

22 T t-1
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where a, b b12 bzoa 11_?/11_b12 Vs a12:712_b12 Vn

a b20’ 21_7/21’ a22:722’ e _g blZEZt’ gzt

notice that y is affected by both & , and &, whereas z, 1s

affected only by ¢, = causal ordering
Variance-covariance matrix of the errors
, € E(e;) E(e,e,)
Z:E(etet):E[e j(elt eZt)—{ )
2t

E(eye,) E(&y)

(_blz o, ) Jz2

{(0 +b2o?) (b, o? )}

Orthogonalize residuals using Choleski decomposition
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2.5 Estimation
Consider the reduced-form VAR(p)

X=A+AX_+AX_ +..+A X_+e
t t p t-p t

Under conditional normality,

XX e X~ N(AHFA X +A X+ +A X LX)

More compactly, let

1
X

t-1

) '
¢ (Kp+l)xd ! H (Kx(Kp+1) (A

Anvih)

0!

X

The jth row of IT' have the parameters of the jth equation
in the VAR,

Thus, write

X |x

t NERRRRS]

X .~ N (I1'z ,%)
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Derive the log-likelihood function

LLF(8) = —¥|og(2z) —Tzlog |5 —%Zf_l(xt—l‘[’zt)’z1(xt—1‘[’zt)’

The first order conditions (FOCs)
ﬁ’MLE - [Ztll th’t ][Z;rzl th,t ]_1

The jth row of IT' is
A =[ox,2 [322 ] j=1..K

which amounts to equation-by-equation OLS. The MLE for

error variance-covariance matrix

iMLE _ %Z:—_lété\,

A oMLE 1 A -
o’ :?Zj_lej for variances

A~ o MLE

1 A .
2 = — 57 8 & for covariances
ij T it jt
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2.6 Model selection criteria

How do we choose lag order?

15 Way
Adding lags reduces the determinant of the variance-

covariance matrix of the reduced-form errors | X |, but also

leads to loss of degrees of freedom (df)

Model selection criteria trade off reduction of | X | for a

more parsimonious model

Akaike Information Criterion (AIC)
AIC :Iog|2|+_lg_N

Schwarz Bayesian Criterion (SBC)

SBC:log|z|+'°9rmN

where N — total number of estimated parameters
N=K(p+1), and T (fixed)
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Minimization
SBC marginal cost of adding regressors greater than AIC

2" Way
Conduct a series of Likelihood Ratio (LR) tests.
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2.7 Impulse response analysis

VAR models concentrate on shocks. First the relevant
shocks are identified, and the response of the system to
shocks is described by analysis impulse responses (the
propagation mechanism of the shocks).

Consider bivariate reduced-form VAR(1)
Xt:Alxt—1+et

backward iteration implies
X=A (AX_,+e_)+e,
after n iterations
=X A +ATX
dS N— oo

Xx=Yr,Ae_,since A"x__ —0

Infinite Moving Average (IMA) or Wold representation

{yt}_ las ay, {eni}
- i=0
Zt aZl azz e2t—i

1 1_b12 &,
e=B7¢= ’
1_b12b21 _b21 1 &,
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2 a |1 —b,, |
:{yt}:[ll(l—blzbzl)]ziwo T {8“1
Z, Ay a, || -bal | &,

1 -Db, |

if we let ¢=[A /(1-b,b,) -

Structural Infinite Moving Average (IMA) representation
N:y Vn(i) m)}{ewl
Zt IZO ¢21(|) ¢22(|) gzt—i
H _ VH(O) #::(0) }PHM@ @Al)}{eyu}m
Zt ¢21(O) ¢22(O) gzt ¢21(1) ¢22(1) 8Zt—1

yt:¢11(0)‘9 yt+¢12(0)8 zt+¢11(1)8 yt—1+¢12(1)8 stg T
Zt:¢21(o)gyt+¢22(0)gzt+¢21(1)gyt—1+¢22(1)gzt—1+' "

Impulses hitting the system

¢.(0) 4,,(0)

¢.,(0) — instantaneous effect of £, on v,

|:¢11(O) ¢12 (O)

}—) matrix of impact multipliers
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¢,.(0) — instantaneous effect of ¢  on z,
¢.(0) — instantaneous effect of & on y,

¢,(0) — instantaneous effect of ¢, on z,

Vn(l) ¢12(1)}
N
¢,1) 4.,(1)

¢.,(1)— 1-period effectof ¢ _on y,
¢,,(1) — 1-period effect of £,, on y,
$,,(1) — 1-period effect of &, on z

t

$,,(1) — 1-period effect of ¢, , on z

t

¢,,(N) — n-period effectof ¢,__ony, (or g, ony,_)

Zi”:o ¢,,(1) — accumulated effect of ¢ on {y, } after n

periods

¢,(n) — n-period effectof &, on z, (or s, on z,,)

66



> #,(i) > accumulated effect of &, on {z,} after n

periods

Therefore
o # (1) — long-run multipliers
¢, (1) versus i — impulse response functions

limg,(1)=0, j k=12

No structural shock should have long-run impact. If the

variables are stationary then shocks have transitory effects.

In his famous article Sims (1980) proposed the following
identification strategy. To identify the shocks use Choleski

decomposition in the structural model, b, =0 =

1-b, (e,
e=B¢= '
0 1 &,

= e, :gyt—b £,y 8, =€,

2% ¢!
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Structural Infinite Moving Average (IMA) representation
= |:yt:| _ Z;”{an ay, } 1 -, {‘%ti}
2y Ay Ay 0 1 |La-i
|:yt:| :{ 1 blZ]{‘gyt}_F{an CiP }{ L blz}r‘ytl} L
4 g g
t 0 1 2t a21 a22 0 1 zt-1

. i 1_b12
|fwelet¢iA1'[ 0 1 ]

|:yt:|:Z?o |:¢11(|) ¢12(i):||:gyti:|
Zt IZO ¢21(|) ¢22(|) &4

H _ Vll(cn ¢12(0)}{ﬂ{¢n(1) %(D}{Syu}
2] |0 4,0 |en] (420 ¢ leus]

Y =¢:.(0)¢ yt+¢12(0)g Houl)e yt—1+¢12(1)8 gt
2,=¢,(0) +¢,, () yt—1+¢22(1)‘9zt—1+' :
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Asymmetry — z_ prior to y, (causal ordering)

Example of calculation of impulse response functions
(IFRs)

o Set X_=..=X_=0

t-p

e Set & =1and =0 for k = j

e Simulate the system fordates t, t+1, t+2,..., t+n

Assume VAR(1)
y =07y 402z +e,
z=02y _+0.7z_+e,

where a,, =a,,=0 (for simplicity) and the reduced-form

errors are given

e,=¢,+0.8¢,, b,=-0.8

7!

e2t :gzt

Asymmetry — z_prior to Yy, (causal ordering)
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At period t
sete,=1,¢=0and y_=z,=0
=

e,.=0+0.8(1)=0.8

e, =1

y =0.7(0)+0.2(0) +0.8=0.8
2=0.2(0)+0.7(0) +1=1

At period t +1

sete. =0,¢ =0

—
y =0.7(0.8)+0.2(1) +0=0.76
(y.,,=0.7y,+0.22))
z,.=0.2(0.8)+0.7() +0=10.86
(z,,=0.2y,+0.72,)

70



At period t + 2

sete, =0,¢, =0

—
y_=0.7(0.76) +0.2(0.86) + 0 = 0.704

( yt+2: O'7yt+l+o'22t+1)
z_=0.2(0.76) +0.7(0.86) + 0 = 0.754

(z,.,=02y,,+0.72 )

At period t +3

Set gzt+3: O’ 8yt+3: O

—
y_,=0.7(0.704) + 0.2(0.754) + 0 = 0.6436

(yt+3: O'7yt+2+o'22t+2)
z_=0.2(0.704) + 0.7(0.754) + 0 = 0.6686

(z,,,=0.2y,,,+0.72,,,)
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Atperiodt+4

sete, =0,¢ =0
7t+ yt+4

—
y_,=0.7(0.6436) +0.2(0.6686) + 0 = 0.584

(yt+4: 0'7yt+3+0'22t+3)
z_=0.2(0.6436) +0.7(0.6686) + 0 = 0.597

(Zt+4: O'7yt+3+0'22t+3)

Stationarity assures the impulse responses ultimately decay

I.Lrp yt+i: O

limz =0
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Similarly, a shock on the other variable
At period t
sete =1, ¢6,=0and y_=z =0
=
e,.=1+0.8(0)=1

e,=0

y=0.7(0)+0.2(0) +1=1
2=0.2(0)+0.7(0)+0=0

At period t +1

SEt ngl:O,g :O

=
y.,=0.7(1) +0.2(0) +0=0.7
(y,,,.=0.7y,+0.2z,)
z,,=0.2()+0.7(0)+0=0.2
(z,.,=0.7y,40.22.)
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At period t + 2
=0

2

sete, =0, ¢

=
y.,=0.7(0.7) +0.2(0.2) + 0=0.53

( yt+2: 07 yt+l+0'22t+l)
z_=0.2(0.7)+0.7(0.2) + 0=0.28

( Zt+2: O'7yt+1+o'22t+1)

At period t+3

Set gyt+3: O’ gzt+3: O

—
y_,=0.7(0.53) +0.2(0.28) + 0=0.43

( yt+3: O'7yt+2+0'22t+2)
z =0.2(0.53)+0.7(0.28) +0=0.3

(Zt+3: 07 yt+2+0'22t+2)
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At period t +4

Set gyt+4: O’ gzt+4: O

=
y ,=0.7(0.43)+0.2(0.30) + 0=0.36

( Y= 0.7 yt+3+o'22t+3)
2 =0.2(0.43)+0.7(0.30) +0=0.3

(2,,,=0.7y,,,+0.22, ;)

At period t+5

Set gyt+5: O’ gzt+5: O

—
y..=0.7(0.36)+0.2(0.30)+0=0.31

( yt+5: 0'7yt+4+o'22t+4)
z =0.2(0.36)+0.7(0.30) +0=0.28

(Zt+5: O'7yt+4+0'22t+4)
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At period t+6

sete =0,¢ =0
yt+6 7t+6

=
y .=0.7(0.31) +0.2(0.28) + 0=0.25

(yt+6: O'7yt+5+o'22t+5)
z =0.2(0.31)+0.7(0.28) +0=0.26

( yt+6: O'7yt+5+0'22t+5)

Stationarity assures the impulse responses ultimately decay

limy, =0

limz_=0
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2.8 Impulse response analysis: Sensitivity analysis
Does the assumed causal ordering affect the structural
inferences?

If 2 close to diagonal — B close to diagonal (identity)
= the ordering does not matter

= the importance of ordering depends on

— COV(en ’ezt) — O-12
War(en)Var(em) 0.0,
H,: 2 diagonal
5 Cov(é,.,) &,

" Nar(g,Var@,) 6.6,

LM =Tp ~ #°

1
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2.9 Examples from macro VARs

The VAR models of the monetary transmission mechanism
are not estimated to give advice on the best monetary
policy. Rather they are estimated to provide empirical
evidence on the response of macroeconomic variables to

monetary policy impulses.

It is interesting to see how the specification of the standard
VAR model has developed over time. Initially models were
estimated on a rather limited set of variables, i.e. prices,
output (real activity) and money (monetary policy). The

underlying structural model is specified as follows
P=Dio+y Pty VAN T E
ytzbzo—b21pt+7/let_l+7/Zzyt_lJr7/23mt_l+gyt
M =Dy —035 P D3,y +7 2P +7 oy a7 sl s+ ey

p, contemporaneous independent of y,,m,
y, contemporaneous independent of m,

This is a just-identification scheme, where the identification
of structural shocks depends on the ordering of variables. It
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corresponds to a recursive economic structure, with the
most endogenous variable ordered last.

Causal ordering = p, > y, > m,

Intuitively, inflation shock (supply shock) — output —

monetary policy

or
Bx,=I',+I", X, ,+&,, &£~WN(0,X,)
where
1 00 ‘pt‘ _blo_
B=/bal 0 |, x=|Y, | [y=|by |
ba1 bs2 1 | M, —b30—
Y V12 Vi3 & ]
Pt
U=V Vo Vs |s €5 €y,
gm
Va1 Vo Va3 -t

Identification is Choleski-type with money ordered last.

This VAR model can be extended to include short-term

Interest rates just before money as a penultimate variable in
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the Choleski identification. The idea is to see the robustness
of the above results after identifying the part of money,
which is endogenous to the interest rate. More specifically,

the underlying structural model is specified as follows
pt=b10+7/11pt_1+7/12yt_1+7/13it_l+7/14mt_1+5pt
ytzbzo—bzlpt+7/21pt_1+7/22yt_1+7/23it_1+y/24mt_1+<9yt

1, =003 P05, Y +7 PV sV Y sl V2N T

mt:b4o_b41pt_b42yt_b43it+7/41pt—1+7/42yt—1+7/43it—1+744mt—1+8mt

p, contemporaneous independent of y,,i,,m,
y, contemporaneous independent of i,,m,

I, contemporaneous independent of m,

Causal ordering = p, > y, > I, > m,
or

Bx,=[",+I'x,,+¢,, &~WN(0,X))

where

80



(1 0 0 0] - - - -
P, by
b1 0 O b
B: 1Xt: .yt 1F0: bzo ’
ba1 b2 1 0 L 30
m b
_b41 D42 b431_ -t 40
Yiin Vi Vis Yu _gpt_
Voar Voo Vaz Voa e
Fl: ’gt_
&
Vi Va2 Vi Vaa ‘
| €y _
Vm Vag Vaz Vs

Some evidence from the literature

After a contractionary monetary policy shocks, plausible
models of the monetary transmission mechanism should be
consistent at least with the following evidence on price,
output and interest rates: (i) price level initially responds
very little, (ii) interest rates initially rise, and (iii) output
initially falls , with a j-shaped response, with a zero long-

run effect of the monetary impulse.
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Having identified the ‘monetary rule’ by proposing an
explicit solution to the problem of the endogeneity of
money, the VAR method focuses on deviation from the
rule. Deviations from the rule are obtained either by
changing the systematic component of monetary policy or
by considering exogenous shocks, which leave monetary
policy unaltered. In the former case the deviation from the
rule is obtained by changing some parameters in the B
matrix describing the simultaneous relations among
variables, while in the latter case the parameters of the
matrix B are not changed. Consider for example the case of
interest rate targeting. The first type of deviations is
obtained by modifying the response of the Central Bank’s
interest rate to macroeconomic conditions (fluctuations in
output and prices), while the second type of deviations is
obtained by considering an exogenous shock which does
not change the response of the monetary policy-maker to
macroeconomic conditions. VAR modeling has focused on
simulating shocks, leaving the systematic component of

monetary policy unchanged.
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Focusing on the shocks is important since only when the
Central Bank deviates from its rules it becomes possible to
collect interesting information on the response of
macroeconomic variables to monetary policy impulses
(shocks)--the best opportunity to detect the response of
macroeconomic variables to monetary policy impulses

unexpected by the market.

Often there are difficulties with interpreting shocks to
interest rates as monetary policy shocks. The response of
prices to an innovation (error) in interest rates gives rise to
the “price puzzle’—prices increase significantly after an
interest rate hike. The “price puzzle’ may be due to mis-
specification of the VAR model. Suppose monetary policy
reacts to expected inflation, then we have an omitted
variable from the VAR positively related to inflation and
interest rates. Such omission makes the VAR mis-specified
and (partly?) explains the positive relation prices and

interest rates observed in the impulse response functions.
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2.10 Forecasting
Consider
VAR(1): x=A +AX_+e€

The model 1-period ahead
x_=A+AX+e
Produce 1-period ahead forecast
X' :AO+A1xt, since the forecast for e__ is (on

average) zero

The model 2-periods ahead
Xt+2:A0+A1Xt+1+et+2
Produce 2-periods ahead forecast
x' =A+AX ,  since the forecast for e_, is (on

average) zero

The model 3-periods ahead

Xt+3:AO + Al Xt+2+et+3
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Produce 3-periods ahead forecast

f r\ r\ f
Xt+3 :Ao + Al Xt+2 !

since the forecast for e__ is zero

Consider
VAR@3): Xx=A+AX_+AX +AX +€

The model 1-period ahead
XM:AO+A1xt+A2 xH+A3xt72+eHl
Produce 1-period ahead forecast
X', :AO+Alxt+A2 xt_l+A3xt_2, since the forecast for e_,

Is (on average) zero

The model 2-periods ahead
Xt+2:AO+AlXt+l+A2 Xt+A3Xt—l+et+2
Produce 2-periods ahead forecast

f r\ r\ f r\ r\
X, =A+AX_ +AX+AX

37 -1

since the forecast for e_,

Is (on average) zero

The model 3-periods ahead
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Xt+3:AO +Al Xt+2 +A2 Xt+1 +A3 Xt+et+3
Produce 3-periods ahead forecast
X' =A+AX  +AX +AX, since the forecast for e_,

IS zero

Forecast uncertainty

In large samples, x' ~ N(x_,Var(x' )). We can constrict

confidence intervals
Xt:n i 1'96 * Se(xtz-n)

-- An example using Gretl --

The iterated forecast method versus the multiperiod
forecast method

So far, we looked at the iterated forecast method. Another
way to obtain forecast is by using the multiperiod forecast

method.

Multiperiod forecasts
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Consider
VAR(3): Xx=A +AX_+AX +AX +e

The model 1-period ahead
Xt+1:A0+A1Xt+A2 Xt—1+A3Xt—2+et+l
Produce 1-period ahead forecast
x' =A+Ax+Ax +Ax ., since the forecast for e

Is (on average) zero

The model 2-periods ahead

x_=A+AX+AX +AX +e_
Produce 2-periods ahead forecast

x' =A+Ax +Ax_+AXx ., since the forecast for e_
is (on average) zero

The model 3-periods ahead
Xt+3:AO+A1Xt +A2 Xt—l +A3 Xt—2+et+3
Produce 3-periods ahead forecast
X', =A+AX +AX_ +AX_,, since the forecast for e_,

IS zero
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If the model is correctly specified, the iterated method is
more precise. Iterating can lead to biased forecasts.

Otherwise, the multiperiod forecast method is preferred.
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This book treats econometric methods for
analysis of applied econometrics with a particular
focus on applications in macroeconomics. Topics
include macroeconomic data, panel data models,
unobserved heterogeneity, model comparison,
endogeneity, dynamic econometric models, vector
autoregressions, forecast evaluation, structural
identification. The books provides undergraduate
students with the necessary knowledge to be able
to undertake econometric analysis in modern

macroeconomic research.
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