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Chapter 1: Panel Data Models 

1.1. Static Panel Data Models 

Panel data are repeated measures on individuals (i) over time (t). A 

longitudinal dataset obtained by following a given sample of individual 

agents (or households, firms, cities, regions, countries etc) over time.  

Examples:  

Consumption function (data on households)   

Cost function (data on firms) 

Production function (data on firms) 

Regress ity  on itx  for Ni ,...,1  and Tt ,...,1

id  year  yr92  yr93 yr94 DUM1      DUM2    Y X 

1  1992  1  0  0  1         0              55 70 

1  1993  0  1  0  1         0    50  68 

1  1994  0  0  1  1         0    66 80 

2  1992  1  0  0  0         1    77 94 

2  1993  0  1  0  0         1              85 100 

2  1994  0  0  1  0         1              90 123 

(...)  (...)   (...)    (...)     (...)    (...)        (...)  (...) (...) 

If all N individuals are observed at all time periods, then balanced panel. If 

there are missing observations, then unbalanced panel. Analyzing 
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unbalanced panel data typically raises few additional issues compared with 

the analysis of balanced data. However, if the panel is unbalanced for 

reasons that are not entirely random (e.g. because firms with relatively low 

levels of productivity have relatively high exit rates), then we may need to 

take this into account when estimating the model. This can be done by 

means of a sample selection model. We abstract from this particular 

problem here. 

 

Repeated cross sections are not the same as panel data. Repeated cross 

sections are obtained by sampling from the same population at different 

points in time. The identity of the individuals (or firms, households etc.) is 

not recorded, and there is no attempt to follow individuals over time. This 

is the key reason why pooled cross sections are different from panel data. 

Even with identical sample sizes, the use if a panel data set will often yield 

more efficient estimators than a series of independent/repeated cross-

sections. 

Example 

 ititity    (random effects)      

 

Suppose we are interested in the change of t  from one period to another. 

Then, the variance of the estimator st  ˆˆ  )( ts   is given by 

 )ˆ,ˆ(2)ˆ()ˆ()ˆˆ( ststst CovVarVarVar     
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Assuming cross-sectional independence  
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Therefore, 0)ˆ,ˆ( stCov   in panel data but 0)ˆ,ˆ( stCov   in repeated cross 

sections. Thus, if one is interested in changes from one period to another, a 

panel will yield more efficient estimators than a series of cross-sections. 

Three specializations to general panel methods: 

1. Short panels (Micro Panels): assumed, with T  small and N . Data on

many individual units and few time periods.

2. Long panels (Macro Panels): assumed, with T  and N  small or

N . Time series data on many individual units. More common with

aggregate data.

3. Dynamic models: regressors include lagged dependent variables.

Examples of Micro Panel data 

- Panel Study of Income Dynamics (PSID)

(https://psidonline.isr.umich.edu)

- The European Community Household Panel (ECHP)

(http://ec.europa.eu/eurostat/web/microdata/european-community-

household-panel)

Examples of Macro Panel data

- Federal Reserve Bank of St. Louis

(https://fred.stlouisfed.org/)
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- Yahoo Finance 

(http://finance.yahoo.com) 

 

- Penn World Table (PWT). Provides purchasing power parity and national 

income accounts converted to international prices for 188 countries over 

the last six decades. (httt://pwt.econ.upenn.edu) 

 

- World Bank, World Development Indicators (WDI). Provides more than 

900 indicators for 152 economies. (www.worldbank.org/data)  

 

- International Monetary Fund (IMF), World Economic Outlook Databases 

& International Financial Statistics (IFS) provide more than 32000 time 

series covering more than 200 countries. (www.imf.org) 

 

- Organization for Economic Co-operation and Development (OECD) 

(www.oecd.org) 

 

- European Central Bank (ECB)  

(http://www.ecb.int) 

 

 

 

 

 

 

Consider the following panel data model  

 ititiit xy   ,     (1) 
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Note that Ni ,...,1  denotes the individual, firm, country and so on, and 

Tt ,...,1  is the time period. The term i  denotes unobservable individual 

specific effects and it  denotes the remainder disturbance assumed to be 

independently and identically distributed (IID).    

 

 

Advantages of panel data 

1. More data compared to time series or cross-sections, more 

variability/more informative data as variables vary over two dimensions, 

less collinearity among regressors, and more efficiency. Time series data 

suffer from multicollinearity. This is less likely in panel data since the 

cross-section dimension adds a lot of variability. In fact, the variation in the 

data can be decomposed into variation between cross sections and variation 

within cross sections. The former variation is usually bigger. 

 

2. Reduces the data needs. The richness of panel data obviates the need for 

data on things that may be difficult or impossible to measure (unobserved 

heterogeneity). 

 

Example: Wage regression 

itiitit abileducwage    

 

where iabil  denotes innate ability (constant through time), which cannot be 

observed. Thus, run OLS  

 ititit weducwage   ,  where itiit abilw     

If innate ability is not correlated with education, then iabil  is just another 

unobserved factor making up the residual. It is true that OLS will not be a 

Best Linear Unbiased Estimator (BLUE), because the error term 
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itiit abilw    is serially correlated (see below). Notice that OLS would be 

consistent, however, and the only substantive problem with relying on OLS 

for this model is that the standard formula for calculating the standard 

errors is wrong. 

However, the problem is that innate ability might be correlated with 

education, in which case  

 0),(0)/(  itititit weducCoveducwE  

 

OLS will be inconsistent (unbiased regardless of the sample size). In 

particular, it can be shown  

 

)(

),(
lim

it

iitOLS

educVar

abileducCov
p    

 

which shows that the OLS estimator is inconsistent unless 

0),( iit abileducCov . If 0),( iit abileducCov  (positive correlation), then there is 

an upward bias. If the correlation is negative, we get a negative bias. 

However, panel data can solve this problem by applying particular 

transformations to the data, which is not possible using cross-sectional 

data. For instance, write the model at time t-1  

)( 111   itiitit abileducwage    

)( itiitit abileducwage    

 

Subtracting the first from the second equation yields  

)()()( 111   itititititit educeducwagewage   

ititit educwage    

Innate ability has been eliminated because it does not vary through time. 
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Properties of it  

1. 0)(  itE    

2. 2
1

2
11 2)()1()()()())(()(    ititititititit VarVarVarVarVarVar   

3. 22
121111 )())(()(),(    ititititititititit EEECov  

0))(()(),( 32122   itititititititit EECov   

0),(  sititCov  ,  2s  

(First-order serial correlation!) 

 

OLS will be consistent, though inefficient due to autocorrelation. This is 

the so-called first-differenced (FD) estimator. 

 

3. Controls for parameter heterogeneity (related to the previous issue). 

Consider the following model: 

ititiit educwage    

 

where the intercept term is specific to each individual (heterogeneous). 

What happens if we ignore this heterogeneity and mistakenly assume that 

the intercept is the same across individuals.  

ititiit educwage   )(  

ititit weducwage   ,  where itiitw     

 

If the individual-specific intercepts are correlated with education, we will 

have  

 0),(0)/(  itititit weducCoveducwE  

 

Thus, OLS will be inconsistent. 

 

-- See figures below  -- 
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Notice how closely related are the problems of omitted variables 

(individual-specific intercepts, which are time invariant) and unobserved 

heterogeneity (time invariant). You can always argue/set ii abil  . 
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1.2  The Fixed Effects ('Within') Estimator 

One way to estimate the model is to assume that each i  is a fixed/constant 

parameter to be estimated (just like  ). The i  thus capture the effects of 

those variables that are peculiar to the i-th individual and that are constant 

over time. This is called the fixed effects (FE) estimator. We may either 

allow in the model for individual-specific dummies, 

 ititiit xy   ,  ( it  is IID)   

 

itit

N

j jjit xdy    
)(

1
  (2)  

 

We thus have a set of N dummies in the model. The parameters N ,...,1  

and   can be estimated by OLS. It is straightforward to see how to test for 

whether the panel approach is really necessary at all. In other words, to test 

whether all of the intercept dummy variables have the same parameter, 

NiH  ...: 20   (N-1 restrictions) 

If this null hypothesis is not rejected, the data can simply be pooled 

together and standard OLS employed. If this null is rejected, however, then 

it is not valid to impose the restriction that the intercepts are the same over 

the cross-sectional units and a panel approach must be employed.  

 

When N is large it may be numerically unattractive to have a regression 

with so many parameters to estimate. Fortunately, one can compute the 

estimator in a simpler way. It can be shown that exactly the same estimator 

for   is obtained if the regression is performed in deviations from 

individual means. Essentially, this implies that we eliminate the individual 

effects i  first by transforming the data. To see this, note  

 iiii xy    
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where 
t iti yTy 1  and similarly for the other variable. Consequently we 

can write 

   

 )()()()( iitiitiiiit xxyy     

 )()()( iitiitiit xxyy      (3) 

 

This regression involves demeaned variables and therefore does not include 

the individual effects i . So, transform the data in terms of deviations from 

individual-specific averages (Within Groups transformation is called 

because the subtraction is made within each cross-sectional unit) and 

remove the individual-specific (intercepts), 

 

Both (2) and (3) can be estimated by OLS. The estimator is called fixed 

effects (FE), least squares dummy variables (LSDV) or within estimator.   

 

The fixed effects estimator focuses on differences 'within' individuals. Put 

differently, it explains to what extent ity  differs from iy  and does not 

explain why iy  is different from jy . Note the assumptions about   impose 

that a change in x  has the same (ceteris paribus) effect, whether it is a 

change from one period to the other or a change from one individual to the 

other.    

 

The OLS estimator for    
 

 2
)(

)()(ˆ
 

 





N t iit

iitN t iitFE

xx

yyxx
  

   )()())((ˆ 1
iitN t iitN t iitiit

FE yyxxxxxx        

 (if FÊ  was a vector) 
 
Assumption 1: unobserved terms i  can be freely correlated with itx . 
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Assumption 2: 0)( isitxE   for s = 1, 2, … T (strict exogeneity). Clearly, 

we cannot include 1ity  as a regressor. 

 

Properties of )( iit     

1. 0)
...

()()()()( 1 



T

EEEEE iTi
itiitiit

   

2. )
...

()()()()( 1

T
VarVarVarVarVar iTi

itiitiit

 
   

)...(
1

)())...(
1

()( 121 iTiitiTiit Var
T

Var
T

VarVar    

T

T

T
T

T

2
222

2
2 )1(11 


 

  

3. 0),( 1   iitiitCov  , since it  is IID across individuals and time.  

 

Therefore, The FE estimator is unbiased and efficient. 

 

We now see why this estimator requires strict exogeneity: the error term 

T
iTi

itiit

 


...1  contains all residuals whereas the transformed 

explanatory variable(s) contains all values of the explanatory variable(s) 

T

xx
xxx iTi

itiit




...1 . Hence, we need 0)( isitxE   for s = 1, 2, … T; or there 

will be endogeneity bias if we estimate by OLS. 

 

In the within estimator, the individual-specific intercepts can be estimated 

as, 

 i
FE

ii xy  ˆˆ  ,  Ni ,...,1   

 

Note that as T , the FE estimator of both i ),...,1( Ni   and   is 

consistent. However, if T  is fixed and N  as is typical micro panels, 
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then only the FE estimator of   is consistent. The FE estimator of i  is 

inconsistent because the number of individual-specific intercepts increases 

to infinity as N .  

 

The covariance matrix for FÊ  (vector)  

   12 ))(()ˆ(
  

N t iitiit
FE xxxxVar    

 

with 

 
22 )ˆˆ(

)1(

1
ˆ   




N t
FE

itiit xy
TN

  

 
22 )ˆ)((

)1(

1
ˆ   




N t
FE

iitiit xxyy
TN

  

It is possible to apply the usual degrees of freedom correction in which case 

the number of explanatory variables is subtracted from the denominator. 

How many degrees of freedom? NT-N-k where k is the number of 

explanatory variables. Note the least squares dummy variables (LSDV) 

method estimates N+k parameters, or put differently, the within estimator 

uses a further N degrees of freedom in constructing the demeaned variables 

(we constructed N individual means). 

 

Under weak regularity conditions, the fixed effects estimator is 

asymptotically normal, so standard inference can be applied. 

 

The within estimator regression will give identical parameters and standard 

errors as would have been obtained directly from the LSDV regression, but 

without the hassle of estimating so many parameters. The disadvantage of 

within estimator regression, however, is that we lose the ability to 

determine the influences of all of the variables that affect the dependent 

variable but do not vary over time. For example, consider 
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 itiitiit IneqGDPpol   ,    

Averaging over time  

 iiitii IneqGDPpol  
___________

 

Consequently we can write 

 )()()()()(
___________

iitiiiitiiiit IneqIneqGDPGDPpolpol     

)()()(
___________

iitiitiit GDPGDPpolpol    

 

 

1.3  The Between Estimator 

An alternative to the within estimator (fixed effects) would be to simply 

run a cross-sectional regression on the time-averaged data, which is know 

as between estimator, 

iiii xy   , i=1,…,N 

An advantage of the between estimator over the within estimator is that 

this averaging often reduces the effect of measurement error in the 

variables on the estimation process 

 

1.4  The First-Differenced (FD) Estimator 

Another way to estimate the model is to use the first-differenced estimator  

ititit xy     

 

Clearly this removes the individual fixed effect, and so we can obtain 

consistent estimates of   by estimating the equation in first differences by 

OLS. 

 

Assumption 1: unobserved terms i  can be freely correlated with itx . 
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Assumption 2: 0)( isitxE   for s = t, t-1. This is a weaker form of strict 

exogeneity than what is required for fixed-effects (FE), in the sense that 

0)( 2 ititxE  ; for example, is not required). Thus, if there is feedback from 

is  to itx  that takes more than two periods, FD will be consistent whereas 

FE will not (hence weaker form of strict exogeneity). 

 

You now see why this estimator requires exogeneity: the error term 

contains it  and 1it , whereas the vector of transformed explanatory 

variable(s) contains itx  and 1itx  : Hence, we need 0)( isitxE   for s = t, t-1; 

or there will be endogeneity bias if we estimate by OLS. 

Important: FE versus FD. 

So, FE and FD are two alternative ways of removing the fixed effect. 

Which method should we use? In general, FD is consistent but inefficient 

(due to autocorrelation). 

 

(i) The FD and FE estimators are the same if T=2 (i.e. we have only two 

time periods). 

 

Proof 

FD: )()()( 111   itititititit xxyy   

 

Note that there is just one cross-section! 

T=2 )()()( 121212 iiiiii xxyy    

 

We cannot have autocorrelation. Thus, OLS is consistent and efficient. 

 

 FE: )()()( iitiitiit xxyy      
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So, one of the 2 cross-sections is redundant.  

 

(ii) However, for T>2, the FD and FE estimators are NOT the same.  

 

Under "classical assumptions", i.e. ),0(~ 2
 IIDit , the FE estimator will be 

more efficient than the FD estimator (as in this case the FD residual it  will 

exhibit negative serial correlation, 2
1)(   ititE ). 

 

Under the null hypothesis that the model is correctly specified, FE and FD 

will differ only because of sampling error. Hence, if FE and FD are 

significantly different - so that the differences in the estimates cannot be 

attributed to sampling error - we should worry about the validity of the 

strict exogeneity assumption. 

 

Note that strict exogeneity rules out feedback from past is  shocks to 

current itx . One implication of this is that FE and FD will not yield 

consistent estimates if the model contains lagged dependent variables 

(dynamics models). In this case, we may be able to use instruments to get 

consistent estimates.  
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1.5  An extension of the Fixed Effects Estimator 

Consider the a fixed effects model with a two-way error component 

 itittiit xy   ,  ( it  is IID)   

itit
T

t
time
tt

N

j
id
jjit xddy     )()(

11
   

 

Note that t  denotes is individual-invariant and accounts for any time-

specific effect that is not included in the regression. For example, it could 

account for strike year effects that disrupt production, oil price effects, 

macroeconomics and financial crisis effects, etc.  

 

However, the number of parameters to be estimated now would be k+N+T, 

and the within transformation in this two-way model would be more 

complex.  

 

1.6  The Pooled OLS Estimator 

Consider 

 )( itiitit xy      

 

where I have put )( iti    within parentheses to emphasize that these terms 

are unobserved and are will not be estimated separately. 

 

Assumption 1: unobserved terms i  are uncorrelated with itx . 

 

Assumption 2: 0)( ititxE   (contemporaneously uncorrelated). This is an 

even weaker form of strict exogeneity than what is required for FD and FE 

estimators in the sense that 0)( 1 ititxE  ; for example, is not required). 

Clearly under these assumptions, iti
OLS
itw    will be uncorrelated with itx , 
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implying we can estimate   consistently using OLS. In this context we 

refer to this as the Pooled OLS (POLS) estimator. 
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1.7 Random effects 

Another way to estimate the model is to assume that each  is a 

random draw from a common distribution with a finite mean and finite 

variance (i.e. random factors IID distributed over individuals). Re-write,  

ititiit xy    

itiitiiit uxuy    

)()( itiitiiit uxuy    

ititit wxy    

where ii u  (thus, ii u ) and itiit uw 

),0(~ 2
ui IIDu  , ),0(~ 2

 IIDit ,  0)( itiuE   

and iu  measures the random deviation of each individual’s intercept term 

from the ‘global’ intercept term  .   

Assumption 1: unobserved terms iu  are uncorrelated with itx . 

Assumption 2: 0)( isitxE   for s = 1, 2, … T (strict exogeneity). 

Note that this combines the strongest assumption underlying FE estimation 

(strict exogeneity) with the strongest assumption underlying POLS 

estimation (no correlation between unobserved effects and the explanatory 

variables).  
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There are no dummy variables to capture heterogeneity in the cross-sectional 

dimension. Instead, this occurs via the iu  terms. 

 

Note: Under the above assumptions: 

 

1) POLS will be consistent but inefficient because of omitted random effects 

problem iu  or because the composite error term )( itiu   is autocorrelated. 

Explores both the within and between dimension of the data. 

2) FE will be consistent but inefficient due the fact that it explores only the 

within dimension of the data. 

3) FD will be consistent but inefficient due to autocorrelation.   

 

Properties of composite error itiit uw   

1. 0)()()(  itiit EuEwE    ti  ,  

2. 222)()()()( wuitiitiit VaruVaruVarwVar     ti  ,  

3. )())(()(),( 11
2

111   ititiititiiitiitiitititit uuuEuuEwwEwwCov   

)()()()( 11
2

  ititiititii EuEuEuE   

22 000 uu     ti  ,  

2))(()(),( usitiitisititsitit uuEwwEwwCov    ,  1s  ti  ,  

(Higher-order serial correlation!) 

 

That is, the correlation of the error terms over time is attributed to the 

individual effects iu . 
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Also note that if 2
u  is high relative to 2

  the serial correlation in the error 

terms will be high. As a result the conventional estimator of the covariance 

matrix for the OLS estimator will not be correct. 

Thus, the composite error is serially correlated, which implies that the 

optimal (most efficient) estimator should be a Generalized Least Squares 

(GLS) estimator. This is the so-called random effects (RE) estimator for 

panel data. 

Derivation of the GLS-random effects estimator 

(based on Hsiao C. (1986), Analysis of panel data, Cambridge University Press)  

For individual i  all errors can be stacked as  

iTiu  

where )1,...,1,1( T  of dimension T  and ),...,( 1  iTii 

TTTuiTi IuVar 22)(  

For each individual i  we transform the data by premultiplying ),...,( 1  iTii yyy

by   
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Thus, the GLS estimator is given by 
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where 
NT

x
x NT it  is the overall sample average.  

 
 

When T  the term 0
22

2


 u

u

T




 

   FE
iitN t iitN t iitiit

GLS yyxxxxxx  ˆ)()())((ˆ 1        

 
 

It can also be derived  

 FEBGLS I  ˆ)(ˆˆ    

 

where     

N iiN ii
B yyxxxxxx ))(())((ˆ 1  is the between estimator for 

 . It is the OLS estimator in the model for the individual means  

 )( iiii uxy   , Ni ,...,1  

 

where   is the weighting matrix that is proportional to the inverse of the 

covariance matrix of B̂ . Thus, the GLS estimator is a matrix-weighted 

average of the between estimator and the within (fixed-effects) estimator, 

where the weight depends upon the relative variances of the two estimators. 

 

The between estimator ignores any information within individuals. The GLS 

estimator, under Assumptions 1-2, is the optimal combination of the within 

and between estimators, and is therefore more efficient than either of these 

two estimators.  
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The RE estimator involves (as any other GLS estimator) running OLS on a 

“suitably transformed” model. The term “suitably transformed” means that 

the transformed model has serial uncorrelated errors. Therefore, OLS is the 

best linear unbiased estimator (BLUE) in this case. Averaging over time, in 

terms of unit means,   

iii wxy  

Multiply by  , where 22

2

1
uT









iii wxy  

Subtract this equation from the initial one. The transformed model is given 

by  

)()()1()( iitiitiit wwxxyy  

It can be shown 

     0)1()1(, 11   iitiiitiiitiit uuEwwwwCov   

Note that (i) if T , then 0
22

2


 uT




  and 1  and the RE (GLS) 

estimator tends to the fixed effects (FE) estimator (micro panel versus macro 

panel). 

The above equation is very interesting because it involves quasi-demeaned 

data on each variable. In other words, rather than subtracting the entire 

individual mean (which is what the fixed effects does), the transformation 

subtracts only some fraction of the mean, as defined by  . Notice that this 

Nektarios Aslanidis

30



 

 

implies that unobserved heterogeneity (as reflected by the individual-

specific time-invariant effects) is not fully eliminated because 

  )()1()( iitiiit uww    

 

As usual, GLS is unfeasible because we do not know the parameter  . So,   

has to be estimated first. This involves estimating 2
u  and  2

 . One way to 

do that, the simplest perhaps, is to use POLS in the first stage to obtain 

estimates of the composite residual itŵ  and its variance 2ˆw  . Based on this, 

we can calculate 2
u  as the covariance between itŵ  and 1ˆ itw  (for instance), 

and then calculate 

222 ˆˆˆ uw    ( 222
uw    ) 

We can then plug 22 ˆ,ˆ u  into the formula for   

22

2

ˆˆ

ˆ
1ˆ

uT







  

Then, estimate the transformed equation.  

)ˆ()ˆ()ˆ1()ˆ( iitiitiit wwxxyy    

 

This is the Feasible Generalized Least Squares (FGLS) estimator.  

 

Also, another consistent estimator of 2
  is obtained from the within 

residuals  
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Under weak regularity conditions, the random effects estimator is 

asymptotically normal with covariance matrix given by 
1

22

2
2 ))(())(()ˆ(














   N ii

u

u
N t iitiit

GLS xxxxT
T

xxxxVar







As long as 0
22

2


 u

u

T




, the random effects estimator is more efficient than 

the fixed effects estimator (  
N ii xxxxT ))((  is positive definite). The gain in 

efficiency is due to using the between variation in the data )( xxi . The 

covariance matrix is routinely estimated by the OLS expressions in the 

transformed model given above. 

1.8 Fixed Effects or Random Effects 

- Testing for non-zero correlation between the unobserved (individual) effect 

and the regressor(s): FE versus RE. The RE estimator requires that the 

individual effect must be uncorrelated with the regressors for it to be 

consistent. If this assumption is not tenable, the FE estimator should be used. 

In the present context, the FE estimator is consistent regardless of whether

i  is or is not correlated with itx , while the RE requires this correlation to be 

zero in order to be consistent. Strict exogeneity is assumed for both models.  

The Hausman statistic is computed as 

)ˆˆ()]ˆ()ˆ([)ˆˆ( 1 REFEREFEREFE VarVarH   

using matrix notation. Note that because the random effects estimator is 

efficient under the null 
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)ˆ()ˆ()ˆˆ( REFEREFE VarVarVar    

Under the null hypothesis,  

0)ˆˆlim(  REFEp   

this test statistic follows a chi-squared distribution with M degrees of 

freedom, where M is the number of time explanatory variables in the model. 

In the case of a single slope parameter, the Hausman statistic is given by 

2
1

2

~
)ˆ()ˆ(

)ˆˆ( 



REFE

REFE

VarVar
H






Failing to reject the null hypothesis implies that the individual effects are 

uncorrelated with the explanatory variable(s). Thus, we may decide to use 

the RE model in the analysis on the grounds that this model is efficient. The 

null hypothesis is that both models are consistent, and a statistically 

significant difference is therefore interpreted as evidence against the RE 

model. 

Also, in practice when computing the covariance matrix 

)ˆ()ˆ()ˆˆ( REFEREFE VarVarVar     

may not be positive definite in finite samples, such that the inverse cannot be 

computed. 
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- Is the key explanatory variable constant over time? In this case, the FE

estimator may not so appropriate because the within transformation will

eliminate this variable.

itiitiit hededimw   __  

iiiii heddeimw   __  

)()()__( iitiitiit deedimwimw    

On the other hand, the RE estimator can control as many time-constant 

variables as possible.  

- It is often argued that the RE model is more appropriate when the cross

sections in the sample can be thought of a having been randomly selected

from one population, but a FE model is more plausible when the cross

sections effectively are the whole population (e.g., stocks traded on a

particular exchange).

- Since there are fewer parameters to be estimated with the RE model (no

dummy or within transformation to perform) and thus degrees of freedom

are saved, the RE has an advantage.

- Are inferences made conditional on the effects that are in the sample or

unconditional?

The FE estimator implies that inferences are made ‘conditional upon the 

effects of the model’. This means that we can only speak about those 

individuals included in the sample. That is, it essentially considers the 
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distribution of ity  given i , the the fixed effects can be estimated. This 

makes sense intuitively if the individuals are 'one of a kind' and cannot be 

viewed as a random draw from the same underlying distribution (e.g., 

countries, large companies, etc). Inferences are with respect to the effects 

that are in the sample.  

 

On the other hand, the RE estimator implies that inferences are made 

‘unconditionally’. Basically, this is because in this model there is an implicit 

assumption that all individual effects come from a common distribution. 

Thus, the nature of the effect of any individual not included in the sample 

can be predicted. In fact, this question is related to the size of N. If N is 

small, the FE may be preferred, otherwise, the RE model is more sensible.  

 

Thus, the random effects method allows one to make inference with respect 

to the population characteristics. One way to formalized this is the random 

effects model says 

 ititit xxyE )|(  

 

while for the fixed effects 

 itiiitit xxyE  ),|(  

 

The parameter   in the two conditional expectations is the same only if 

0)|( iti xE  . So, the reason why one may prefer fixed effects is that some 

interest lies in the alphas, which is the case if the number of individuals is 

relatively small and of a specific nature.  
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1.9 Mean Group (MG) estimator 

Consider the following model 

ititiiit xy  

Assumption: Parameter heterogeneity can be freely correlated with itx . 

Suppose we are interested in the average effect across individuals (the mean 

impact of i  and i  on ity ). The Mean Group (MG) estimator estimates the 

individual-specific time series by standard OLS and then averages these 

coefficients over individuals.   

 


N

i

OLS
i

MG

N 1

1 

The MG estimator is consistent and asymptotically normal for N .  

The variance of the MG estimator is given by 

 





N

i

MGOLS
i

MG

NN
Var

1

2)(
)1(

1
)( 

Standard inference applies.  

The advantage of MG estimator is that we do not calculate the variances of 

the estimates for each individual (in this case, we would need to account for 

cross-sectional dependence, if there is any). Instead, we compute the 

variance of the estimates over individuals. A further advantage of MG is that 

we can accommodate unbalanced panels. 
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1.10 Dynamics Panel Data Models 

An autoregressive panel data model, AR(1) 

itiitit yy   1 , 1||   

The fixed effects estimator for   
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where 


T

t iti yTy
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1  and  


 
T

t iti yTy
1 1

1
1, . Substitute AR(1) into the 

estimator yields 
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It can be shown 

0
)1(

)1(
))((

1
lim

22

2

1 1 1,1 










    

 


 
T

N

i

T

t iitiit
N

TT

T
yy

NT
p  

For fixed T  and N , the fixed effects estimator is biased and 

inconsistent! 

Example 

» SIGMA=1;

» T=5;

» G=0.2;
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» BIAS=-((T-1)-T*G+G^T)/((T^2)*(1-G)^2);

» BIAS;

-0.18752000

More persistent process 

» G=0.8;

» BIAS=-((T-1)-T*G+G^T)/((T^2)*(1-G)^2);

» BIAS;

-0.32768000

Larger T 

» T=100;

» BIAS=-((T-1)-T*G+G^T)/((T^2)*(1-G)^2);

» BIAS;

-0.047500000

Note inconsistency is not caused by anything we assumed about the alphas. 

The problem is that   0)(),( 1,1   iitiit yyCov  .  

However, if T , then 0
)1(

)1(
22

2










TTT

T
! So, fixed effects is

consistent when TN , .  

Take first difference and calculate 

)()( 1211   itititititit yyyy   
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OLS is not consistent since 0),( 11  itityCov   even when T . This 

transformed model suggests IV estimation. Given ),0(~ 2
 IIDit  (no 

autocorrelation), for example, use the instrument 2ity  as 

   0),( 221   ititit yyyCov  (relevant) 

   0),( 21   ititit yCov   (exogenous) 

 

Thus, the IV estimator 
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A necessary condition for consistency  

 0)(
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1
lim

1 2 21 
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t ititit y
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for either N  or TN , .  

 

An alternative estimator uses the instrument )( 32   itit yy  as 

   0)(),( 3221   itititit yyyyCov  (relevant) 

   0)(),( 321   itititit yyCov   (exogenous) 
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which is consistent if  

 0))((
)2(

1
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0))((
)2(

1
lim

1 3 321 
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Which estimator do we use? 

Use both adopting a GMM. 

Note    0)()(
)1(

1
lim 211 2 21 
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are moment conditions. Both IV estimators impose one moment condition in 

estimation. Generally, imposing moment conditions increases the efficiency 

of the estimation.  

Arellano and Bond (1991, Review of Economic Studies). 

Example 4T  

In period 2   0)( 012  iii yE    

In period 3   0)( 123  iii yE  ,   0)( 023  iii yE     

In period 4   0)( 234  iii yE  ,   0)( 134  iii yE  ,   0)( 034  iii yE     

GMM estimator 

Define the vector of transformed error terms 
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and the matrix of instruments 
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each row contains the instruments that are valid for a given period. Thus, we 

write compactly 

    0 iiZE   

    0)( 1,  iii yyZE   

 

… 

 

It can be shown that the GMM estimator is consistent and asymptotically 

normal. 

 

  

An autoregressive panel data model with exogenous variables 

 itiititit yxy   1  

  

Use GMM. Take first difference and calculate 

 )()()( 12111   itititititititit yyxxyy   

itititit yxy   1  

 

If itx  is strictly exogenous, we have    

0)(  ititxE  , t   

 

41



and the matrix of instruments 
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Chapter 2: VAR Models 

Since Sims (1980) critique of traditional macroeconometric 

modeling, vector autoregressive (VAR) models are widely 

used in macroeconomics. In the traditional approach the 

typical question asked is ‘What is the optimal response by 

the monetary authority to movements in macroeconomic 

variables to achieve given targets?’ Sims argued that a VAR 

model is an unrestricted model that treats all variables as 

endogenous “without restrictions based on supposed a 

priori knowledge” derived from theory. 

43



2.1 Bivariate Structural Model 

Let 
t

y , 
t

z  endogenous in bivariate first order structural 

VAR(1) 

yttttt
zyzbby    1121111210

  (1) 

zttttt
zyybbz    1221212120

  (2) 

assumptions (a) 
t

y , 
t

z  stationary processes (b) 
yt

 , 
zt



white noise processes ),0(~ 2

yyt
WN  , ),0(~ 2

zzt
WN 

(c) 
yt

  and 
zt

  are uncorrelated.  

There are feedback effects between 
t

y  and 
t

z

Time lag effects 

12
  → time lag effect of 

1tz  on 
t

y

21
  → time lag effect of 

1ty  on 
t

z

Contemporaneous effects 

12
b  → contemporaneous effect of 

t
z  on 

t
y

21
b  → contemporaneous effect of 

t
y  on 

t
z

Derive reduced-form VAR(1) 

(1), (2)  
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transformed errors (reduced-form errors) 
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Properties of reduced-form errors 

Mean 

0)(
1

1
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Variance 
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since 
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Cross-correlation (covariance) 
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The errors in the reduced-form equations are correlated! 

Only when 0
2112
bb , there is no correlation.  
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Variance-covariance matrix of the errors 
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2.2 Multivariate Structural Model 

Consider K-dimensional time series vector ),...,( 1
 Kttt yyx  

generated by reduced-form VAR(1) 
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variance-covariance matrix   is time-invariant, symmetric, 

non-singular 
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More generally, the structural VAR(p) 
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where B  is the )( KK   matrix of contemporaneous 

(structural) effects, 
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  ( pj ,...,1 ) are )( KK   matrices of 

(structural) lagged coefficients, and 
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  is the vector of 

structural errors.  

 

Reduced-form VAR(p) 
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  ))(( 11   BEB tt   non-diagonal   
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1   BIB ,      if 2I  identity matrix  
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tt BVareVar   
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1   BIB ,      if 2I  identity matrix  
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2.3 Stationarity  

Vector version of weak stationarity  

Mean 
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where ),...,,(
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K

  independent of t   

 

Variance-covariance 
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  ( KK  ) independent of t   

 

Conditions for stationarity 

Consider univariate AR(p) (for illustration) 
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stationarity and stability requires inverse of roots of pth 

order polynomial to lie inside unit circle  
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Infinite Moving Average (IMA) or Wold representation 
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Bivariate VAR(1) 
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Determinantal equation 

)det(
12
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= 2

21122211
)1)(1( LaaLaLa   
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211222112211
)()(1 LaaaaLaa   
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21
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roots 
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stationarity and stability requires inverse of the roots of 2nd 

order polynomial to lie inside unit circle 
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1
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If one of the two roots is one then both 
t
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Nektarios Aslanidis

56



 

 

2.4 Identification 

Consider a bivariate structural VAR(1)  

yttttt
zyzbby    1121111210

   

zttttt
zyybbz    1221212120

   

 

The structural system is not directly estimable by OLS 

since  

 0),( yttzCov   and 0),( zttyCov   

implies biased and inconsistent estimates! 

 

Consider the reduced-form VAR(1) 
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here OLS is applicable. 

 

Recover all information present in structural model? 

 

Structural model is underidentified. Why? 
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However, if we set 0
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  ⇒  causal ordering 
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Orthogonalize residuals using Choleski decomposition     
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2.5 Estimation  

Consider the reduced-form VAR(p) 
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Under conditional normality,  
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The jth row of   have the parameters of the jth equation 

in the VAR. 

 

Thus, write 

 ),(~,...,|
11


 tptt

zNxxx  

 

 

Nektarios Aslanidis

60



 

 

Derive the log-likelihood function  
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2.6 Model selection criteria 

How do we choose lag order? 

 

1st Way 

Adding lags reduces the determinant of the variance-

covariance matrix of the reduced-form errors || , but also 

leads to loss of degrees of freedom (df)  

Model selection criteria trade off reduction of ||  for a 

more parsimonious model 

Akaike Information Criterion (AIC) 

AIC = N
T

2
||log   

 

Schwarz Bayesian Criterion (SBC) 

SBC = N
T

T )log(
||log   

 

where N  total number of estimated parameters 

N=K(p+1), and T (fixed) 
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Minimization 

SBC marginal cost of adding regressors greater than AIC 

 

2nd Way 

Conduct a series of Likelihood Ratio (LR) tests.  
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2.7 Impulse response analysis 

VAR models concentrate on shocks. First the relevant 
shocks are identified, and the response of the system to 
shocks is described by analysis impulse responses (the 
propagation mechanism of the shocks). 
 

Consider bivariate reduced-form VAR(1) 
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Infinite Moving Average (IMA) or Wold representation 
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Structural Infinite Moving Average (IMA) representation 
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n
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0 21 )(   accumulated effect of yt  on }{ tz  after n                       

periods 

 

Therefore 


0 )(i jk

i   long-run multipliers 

)(ijk  versus i   impulse response functions 

 0)(lim 


i
jki

 , 2,1, kj  

 

No structural shock should have long-run impact. If the 

variables are stationary then shocks have transitory effects. 

 

 

In his famous article Sims (1980) proposed the following 

identification strategy. To identify the shocks use Choleski 

decomposition in the structural model, 0
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Structural Infinite Moving Average (IMA) representation 
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Asymmetry  t
z  prior to t

y  (causal ordering)  

 

Example of calculation of impulse response functions 

(IFRs)  

 Set 0...
1

  ptt
xx  

 Set 1
jt

  and 0
kt

  for jk    

 Simulate the system for dates t , 1t , 2t ,…, nt   

 

Assume VAR(1) 

 tttt
ezyy

111
2.07.0    

 tttt
ezyz

211
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where 0
2010
aa  (for simplicity) and the reduced-form 

errors are given 
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1
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e 

2  

Asymmetry  t
z  prior to t

y  (causal ordering)  
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At period t  

set 1
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 , 0
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  and 0
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At period 2t  

set 0
2
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 , 0
2
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At period 4t  

set 0
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Stationarity assures the impulse responses ultimately decay 
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Similarly, a shock on the other variable 
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At period 2t  
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At period 4t  
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At period 6t  

set 0
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Stationarity assures the impulse responses ultimately decay  
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2.8 Impulse response analysis: Sensitivity analysis   

Does the assumed causal ordering affect the structural 

inferences? 

If   close to diagonal  B  close to diagonal (identity) 

 the ordering does not matter     
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2.9 Examples from macro VARs 

The VAR models of the monetary transmission mechanism 

are not estimated to give advice on the best monetary 

policy. Rather they are estimated to provide empirical 

evidence on the response of macroeconomic variables to 

monetary policy impulses. 

 

It is interesting to see how the specification of the standard 

VAR model has developed over time. Initially models were 

estimated on a rather limited set of variables, i.e. prices, 

output (real activity) and money (monetary policy). The 

underlying structural model is specified as follows 

pttttt mypbp    11311211110   

ytttttt myppbby    1231221212120    

mttttttt mypybpbbm    133132131323130    

 

tp  contemporaneous independent of tt my ,  

ty  contemporaneous independent of tm  

This is a just-identification scheme, where the identification 
of structural shocks depends on the ordering of variables. It 
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corresponds to a recursive economic structure, with the 
most endogenous variable ordered last. 
 

Causal ordering  t
p   t

y   t
m  

Intuitively, inflation shock (supply shock)  output   

monetary policy  

or 

 ttt xBx  110 ,    ),0(~  WNt  
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Identification is Choleski-type with money ordered last.  

This VAR model can be extended to include short-term 

interest rates just before money as a penultimate variable in 
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the Choleski identification. The idea is to see the robustness 

of the above results after identifying the part of money, 

which is endogenous to the interest rate. More specifically, 

the underlying structural model is specified as follows 

ptttttt miypbp    11411311211110   

yttttttt miyppbby    1241231221212120    

itttttttt miypybpbbi    134133132131323130    

mttttttttt miypibybpbbm    14414314214143424140

   

tp  contemporaneous independent of ttt miy ,,  

ty  contemporaneous independent of tt mi ,  

ti  contemporaneous independent of tm  

Causal ordering  t
p   t

y   ti   t
m  

 

or 

 ttt xBx  110 ,    ),0(~  WNt  

where 
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Some evidence from the literature 

After a contractionary monetary policy shocks, plausible 

models of the monetary transmission mechanism should be 

consistent at least with the following evidence on price, 

output and interest rates: (i) price level initially responds 

very little, (ii) interest rates initially rise, and (iii) output 

initially falls , with a j-shaped response, with a zero long-

run effect of the monetary impulse.  
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Having identified the ‘monetary rule’ by proposing an 

explicit solution to the problem of the endogeneity of 

money, the VAR method focuses on deviation from the 

rule. Deviations from the rule are obtained either by 

changing the systematic component of monetary policy or 

by considering exogenous shocks, which leave monetary 

policy unaltered. In the former case the deviation from the 

rule is obtained by changing some parameters in the B 

matrix describing the simultaneous relations among 

variables, while in the latter case the parameters of the 

matrix B are not changed. Consider for example the case of 

interest rate targeting. The first type of deviations is 

obtained by modifying the response of the Central Bank’s 

interest rate to macroeconomic conditions (fluctuations in 

output and prices), while the second type of deviations is 

obtained by considering an exogenous shock which does 

not change the response of the monetary policy-maker to 

macroeconomic conditions. VAR modeling has focused on 

simulating shocks, leaving the systematic component of 

monetary policy unchanged.    
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Focusing on the shocks is important since only when the 

Central Bank deviates from its rules it becomes possible to 

collect interesting information on the response of 

macroeconomic variables to monetary policy impulses 

(shocks)--the best opportunity to detect the response of 

macroeconomic variables to monetary policy impulses 

unexpected by the market. 

 

Often there are difficulties with interpreting shocks to 

interest rates as monetary policy shocks. The response of 

prices to an innovation (error) in interest rates gives rise to 

the ‘price puzzle’—prices increase significantly after an 

interest rate hike. The ‘price puzzle’ may be due to mis-

specification of the VAR model. Suppose monetary policy 

reacts to expected inflation, then we have an omitted 

variable from the VAR positively related to inflation and 

interest rates. Such omission makes the VAR mis-specified 

and (partly?) explains the positive relation prices and 

interest rates observed in the impulse response functions. 
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2.10 Forecasting 

Consider  

 VAR(1): 
ttt

exAAx 
110

 

 

The model 1-period ahead 
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ttt
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Produce 1-period ahead forecast 
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t
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 ,  since the forecast for 
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e  is (on 

average) zero  

  

 

 

The model 2-periods ahead 
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ttt
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Produce 2-periods ahead forecast 
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2t
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The model 3-periods ahead 
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ttt
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Produce 3-periods ahead forecast 
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Consider  

 VAR(3): 
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Forecast uncertainty 
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 -- An example using Gretl -- 
 

The iterated forecast method versus the multiperiod 

forecast method 

So far, we looked at the iterated forecast method. Another 

way to obtain forecast is by using the multiperiod forecast 

method. 

 

Multiperiod forecasts 
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If the model is correctly specified, the iterated method is 

more precise. Iterating can lead to biased forecasts. 

Otherwise, the multiperiod forecast method is preferred. 
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This book treats econometric methods for 
analysis of applied econometrics with a particular 
focus on applications in macroeconomics. Topics 
include macroeconomic data, panel data models, 
unobserved heterogeneity, model comparison, 
endogeneity, dynamic econometric models, vector 
autoregressions, forecast evaluation, structural 
identification. The books provides undergraduate 
students with the necessary knowledge to be able 
to undertake econometric analysis in modern 

macroeconomic research.
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