7™ URV DOCTORAL
WORKSHOP IN COMPUTER

SCIENCE AND MATHEMATICS

Edited by
Mohamed Abdel-Nasser, Oriol Farras,
Domeénec Puig, Hatem A. Rashwan

UNIVERSITAT ROVIRA i VIRGILI




oeparamen dEneinvea - Informatica i ESCOLA TECNICA SUPERIOR
D I M Matematiques D’ENGINYERIA
UNIVERSITAT * Universitat Rovira i Virgili .1

ROVIRA I VIRGILI

Title: 7" URV Doctoral Workshop in Computer Science and Mathematics
Editors: Mohamed Abdel-Nasser, Oriol Farras, Doméenec Puig, Hatem A. Rashwan
March 2022

Universitat Rovira i Virgili
C/ de I'Escorxador, s/n
43003 - Tarragona
Catalunya (Spain)

ISBN: 978-84-1365-033-3
DOI: 10.17345/9788413650333

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.



CONTENT

Preface
Mohamed Abdel-Nasser, Oriol Farras, Doménec Puig, and Hatem A. Rashwan

DeepKey: Watermarking Deep Learning Models
Najeeb Jebreel

End User’s Side Explanations of DL Models’ Predictions
Rami Haffar

Distance and Size Calculation of the detected objects on Floor from robot using Bounding Box
Aditya Singh

Quality of Life Analysis of Dependent People using Multiple Linear Regression Model
Gaurav Kumar Yadav

Dynamic update of Fuzzy Random Forests to improve classification of Diabetic Retinopathy
Jordi Pascual-Fontanilles

Monocular Depth Estimation with Self-supervised Graph Convolutional Network
Armin Masoumian

Contributions to GDPR compliance by means of Smart Contracts
Cristofol Daudén-Esmel

Deep learning-Based Approach for Retinal Lesions Segmentation in Eye Fundus Images
Moahammed Yousef Salem Ali

Fundus Image Quality Assessment Based on Deep Autoencoder Networks
Saif Khalid

Radiomics-based computer-aided diagnosis system for prostate cancer classification in MRI
images
Eddardaa Ben Loussaief

Breast Tumor Segmentation in Ultrasound Image using Deep Learning Techniques
Nadeem Issam Zaidkilani

Optimizing the first convolutional layer
Joao Paulo Schwarz Schiiler

Efficient Data Augmentation Techniques for Lesion Detection in Breast Tomosynthesis Images
Using Deep Learning Models
Loay Hassan

Road Damage Detection Using Yolov5
Ammar Mohammed Okran



PREFACE

This book contains the abstracts of the works presented in the 7th Doctoral
Workshop in Computer Science and Mathematics - DCSM 2022. It was
celebrated in Universitat Rovira i Virgili (URV), Campus Sescelades, Tarragona,
on March 31, 2022. The aim of this workshop is to promote the dissemination
of ideas, methods, and results developed by the students of the PhD program
in Computer Science and Mathematics from URV. It has been jointly organized
by the research group of Intelligent Robotics and Computer Vision (IRCV) and
the Doctoral Program on Computer Science and Mathematics of Security
of URV.

The editors and organizers invite you to contact the authors for more detailed
explanations and we encourage you to send them your suggestions and
comments that may certainly help them in the next steps of their PhD thesis.
We thank all the participants and, especially, the students that presented their
work in this DCSM workshop. Finally, we also want to thank Universitat
Rovira i Virgili, the Departament d’Enginyeria Informatica i Matematiques
(DEIM), and the Escola Técnica Superior d’Enginyeria (ETSE) for their support.

Mohamed Abdel-Nasser, Oriol Farras, Domeénec Puig, and Hatem A. Rashwan



DeepKey: Watermarking Deep Learning Models

Najeeb Jebreel *

Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili
Tarragona, Catalonia
najeeb. jebreel@urv.cat

Abstract. Many organizations devote significant resources to building high-accuracy deep learning
(DL) models. Thus, they have a great interest in protecting their trained models from being stolen
or misused. Embedding watermarks (WMs) in DL models is a useful means to protect their owners’
intellectual property (IP). This paper proposes DeepKey, a novel watermarking framework for DL
models. We leverage multi-task learning (MTL) to learn the original classification and watermarking
tasks jointly. Empirical results show that DeepKey can preserve the utility of the original task and
embed a robust WM.

Keywords: Deep learning models; Ownership; Intellectual property; Watermarking.

1 Introduction

Deep learning models’ owners, such as technology companies, devote significant resources
to train their models on vast amounts of proprietary training data, whose collection also
implies a significant effort [1]. Thus, they seek compensation for the incurred costs by
reaping profits from commercial exploitation [3]. Due to the competitive nature of the
technology market, a stolen or misused model is clearly detrimental to its owner on both
economic and competitive terms. Therefore, legitimate owners need a robust and reliable
way to prove their ownership of DL models in order to protect their intellectual property
(IP). Embedding watermarks (WMs) in DL models is a useful means to protect their
owners’ intellectual property (IP) [2].

We propose DeepKey, a novel watermarking framework that allows owners to embed
reliable and robust digital WMSs in their DL models. Extensive experiments show that Deep-
Key can successfully embed robust WMs with reliable detection accuracy while preserving
the accuracy of the original task. The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of our framework. Section 3 reports the experimental results.
Finally, Section 4 gathers conclusions and proposes several lines of future research.

2 The DeepKey framework

The key idea of our framework is to perform two tasks at the same time: the original
classification task 7,4, and the watermarking task T:,,. Fig. 1 shows the global workflow
of DeepKey.

Watermark embedding. DeepKey takes four main inputs in the WM embedding
phase: the target model (pre-trained or from scratch), the original data set, the owner’s
WM carrier set, and the owner’s information string. The output is the marked model,
corresponding private model, and the owner’s signature. First, the WM carrier set samples
are signed using the owner’s signature. After that, the signed WM carrier set is combined

* PhD advisor: Josep Domingo-Ferrer
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Fig. 1: DeepKey global workflow.

with the original data set, and they are used to fine-tune (or train) the targeted model.
Finally, the private model takes the final predictions of the original model as inputs and
outputs the position of the owner’s signature on the WM sample. We leverage MTL to
train the two models jointly.

Watermark extraction and verification. To extract and verify the ownership of a
remote black-box DL model, the owner first delivers the WM carrier set and her signature
to the authority. She also tells the authority about the methodology used to sign the WM
samples and the predefined positions where the WM may be placed. Next, the authority
(i.e., the verifier) randomly chooses a sample from the carrier set, puts the signature in a
random position, queries the suspicious remote DL model and sends the model’s predictions
to the owner. The owner (i.e., the prover) takes the predictions, passes them to her private
model, and tells the authority the position of her signature on the image. The authority
repeats the proof as many times as she desires. After that, the owner’s answer accuracy
is evaluated according to a minimum threshold. If the owner surpasses the threshold, her
ownership is regarded as proven by the authority.

3 Experimental results

Original and watermark tasks data sets and models. We used the CIFAR10 data
set for the original task while we used STL10 as a WM carrier set. We used ResNet18
and VGG16 DL models for the original task while we used a simple DL model (with 496
learnable parameters) as a private model. Fig. 2 shows some examples of signed carrier set
images and their corresponding labels.

We used accuracy as a performance metric for the original task and the WM task. We
set the required threshold T' = 90% to prove model ownership. In the following, we evaluate
the fidelity, reliability and integrity of DeepKey. Also, we assess its robustness against two
types of attacks: fine-tuning [4] and model compression [5].

Fidelity and reliability. Embedding the WM should not decrease the accuracy of
the marked model on the original task. As shown in Tab. 1, DeepKey did not degrade the
accuracy of the original task and successfully embedded the watermark. This is thanks to
the joint training, which simultaneously minimizes the loss for the original task and the
WM task. Also, it shows that legitimate owners were able to reliably prove their ownership
with accuracy greater than 90%.
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Fig. 2: Examples of signed STL10 carrier set images employed with the CIFAR10 data set.

Integrity. DeepKey yields low WM accuracy detection with unmarked models, and
thus it does not falsely claim ownership of models owned by a third party. In our experi-
ments, there were 6 classes for the watermarking task. Looking at Tab. 2, the accuracy of
falsely claimed ownership of unmarked models is not far from guessing 1 out of 6 numbers
randomly, which equals approximately 16%.

Table 1: Accuracy of the original and the WM tasks

Marked model ‘WM detection

Unmarked model

Benchmark

accuracy %

accuracy %

accuracy %

By finetuning
(30 epochs)

From scratch
(250 epochs)

By finetuning

From scratch

CIFAR10-ResNet18

91.96

92.07

92.53

99.96

99.97

CIFAR10-VGG16

90.59

90.52

91.74

99.68

99.89

Table 2: Integrity results with unmarked models. Each private model was tested with two
different unmarked models: one model has the same topology as its corresponding marked
model, the other one has a different topology. The last four columns show the accuracy
detection obtained with the unmarked models.

. ‘Watermark detection accuracy
Watermark detection accuracy .
Dataset |DL model . with unmarked models %
with marked models% -
Same topology|Accuracy|Different topology|accuracy
CIFAR10|ResNet18 99.97% ResNet18 18.92% VGG16 19.80%
CIFAR10| VGG16 99.89% VGG16 7.92% ResNet18 12.32%

Robustness. Tab. 3 show that DeepKey was robust to the fine-tuning attacks for a
number of fine-tuning epochs ranges from 50 to 200. Fig. 3 shows that DeepKey is robust
against model compression, and the accuracy of the WM remains above the threshold
T = 90% as long as the marked model is still useful for the original task.

4 Conclusion

We have presented DeepKey, a novel watermarking framework that enables DL model
owners to embed robust watermarks in their models while preserving the accuracy of the
main task. As future work, we plan to extend DeepKey to watermark federated deep neural
networks.
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Table 3: Robustness to model fine-tuning

Benchmark CIFAR10-ResNet18|CIFAR10-VGG16
# of epochs 50 | 100 | 200 50 | 100 | 200

Marked model accuracy %192.40(92.30| 92.47 |91.31|91.64|91.69
WM detection accuracy %98.19/98.05| 99.12 [97.20(94.72|96.67
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Fig. 3: Robustness against model compression
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Abstract. Deep learning (DL) models are being used to solve various critical tasks
in the past few years. However, those models are ambiguous in terms of how their
predictions are made. For the end users to trust those models, the end users should
have the ability to generate local explanations of the predictions made by the DL
models. In this work, we present a novel approach allowing an end user to locally
generate explanations for a DL classification model accessed via a provider’s API.
We approximate the provider’s model with a local surrogate model. We then use the
surrogate model’s components to locally generate explanations.

Keywords: End-user explanations; Deep learning; Counterfactual explanations.

1 Introduction

Building highly accurate Deep learning (DL) classification models requires a
large amount of training data, whose collection and labeling involve a signifi-
cant effort. Therefore, small businesses and ordinary users, who cannot afford
this effort, resort to big technology companies that provide paid API access to
highly accurate DL models via Machine Learning as a Service (MLaaS) plat-
forms [4]. These end users then query those models with their (small) data
and obtain the final classification predictions.

Even though end users are interested in using MLaaS with highly accurate
DL models, they may not entirely trust such models due to the lack of trans-
parency of DL predictions. Obtaining explanations alongside predictions helps
end users understand why a DL model produces a specific prediction, which
increases the trust in the model and contributes to clearer decision-making [1].

We propose a novel approach that allows an end user to locally generate
DL model-specific explanations for a DL classification model accessed via a
provider’s API. The approach consists of two main phases: i) approximat-
ing the provider’s model by a local surrogate model, using the small portion
of data owned by the end user and ii) using the surrogate model to locally

* PhD advisor: Josep Domingo-Ferrer, and David Sdnche;j
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generate DL model-specific explanations that approximate the explanations
obtainable with white-box access to the provider’s model. The remainder of
the paper is organized as follows. Section 2 presents an overview of our pro-
posed method. Section 3 reports the experimental results. Finally, Section 4
gathers conclusions and proposes several lines of future research.

2 Explaining deep learning classification model predictions on
the user’s side

The importance of our proposed method lies in allowing users to reliably
understand how the providers’ models make their predictions and determine
whether these predictions are trustworthy.

In the first phase, we need to approximate the provider’s model by a local
surrogate model having an accuracy as close to that of the provider’s model
as possible. However, the end user does not own enough data to train such a
model. To tackle this challenge, we employ a modified version of the Mixup
method [6] to augment the user unlabeled data and obtain more representative
training data. Once the user obtains the augmented data, she queries the
provider’s API to label the data. Afterward, due to the model knowledge
from a complex “master” to a simpler “student” model being transferable [3],
the end user trains a local surrogate model using the labeled data she recently
acquired.

Once the end user obtains the trained local surrogate model she can use it
to generate accurate explanations for the predictions of the provider model.
Since the surrogate model has almost learned the same decision boundaries
as the provider’s model, explanations generated using the surrogate’s inter-
nal components can be expected to accurately approximate the explanations
generated using the provider’s internal components.

2.1 Generating the explanations.

In our work, we explain the provider’s model by generating counterfactual ex-
planations [5] of a specific example. Counterfactual explanations tell us how
to change the example’s features so that its predicted label also changes. In
this way, we can understand how the model makes its predictions and explain
individual predictions. We use adversarial training [2] as a means to generate
adversarial examples that counterfactually explain the model predictions. In
fact, adversarial examples are aimed at fooling the model rather than explain-
ing it, but, in the end, they serve the same purpose as counterfactual examples
by slightly changing the features of input examples to modify their predicted
labels.
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3 Experimental results

Models and data sets. We use the gender classification and MNIST data
sets to test the performance of the proposed method on image data. In all the
experiments we took the surrogate model to be simpler than the provider’s
model, which can save training time and at the same time retains most of the
provider’s model knowledge.

We used the following evaluation metrics to measure the performance of
the trained surrogate models and the generated explanations:

e Accuracy: We used this metric to measure and compare the performance
of the provider’s and the surrogate models.

e Structural Similarity Index Measure (SSIM): We used SSIM to measure
the similarity between the explanations provided by the surrogate model
and the ones generated by the provider’s model for image data.

Accuracy of surrogate model. Table 1 reports the accuracy of the
provider’s models and the trained surrogate models. We can see that the
performance of the surrogate models was nearly equivalent to that of the
provider’s model.

Table 1. Accuracy of the Provider’s model and surrogate model.

Data set|Provider model|Surrogate model
Gender 96.3% 94.47%
MNIST 99.22% 96.1%

Surrogate model explanation. Table 2 reports the average SSIM for the
Gender and MNIST validation images. We can see that the surrogate model
generates explanations (counterfactual examples) with very high similarity to
those generated by the provider’s model, which indicates that the surrogate
model is properly approximating the provider’s model.

Table 2. Similarity between the adversarial examples generated by the surrogate
model and those generated by the provider’s model on the Gender and MNIST data
sets.

Gender [96.79%
MNIST|98.27%

Figure 1 shows two examples of these visual explanations generated for
the Gender and MNIST data sets. By looking at the pixels that caused the
prediction to change, we can see that, in general, the explanations generated by
the surrogates were consistent with those generated by the provider’s model:
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Fig. 1. Visual explanations generated by the surrogate model in comparison with
those generated by the provider’s models.

4 Conclusion

We have presented a novel approach that enables the end user to locally
generate explanations on the predictions of the provider’s model. As future
work, we plan to test the performance of our approach on other computer
vision tasks, such as detection and segmentation, as well as natural language
processing.
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Distance and Size Calculation of the detected
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1 Introduction

This work aims to develop a mathematical relation between the position of an
object in a two dimensional image plane and three dimensional world space
with respect to a robot mounted camera by using object detection bound-
ing box coordinates. In human-centric robot navigation, it is very necessary
to make a perception of object distance and position with respect to robot.
It uses the object detection information in the form of bounding box by us-
ing monocular vision and uses the robot kinematic parameters to establish
a mathematical relation between object and robot camera. The position of
the object is calculated in two fold: one is by calculating the distance in front
direction and other is by doing side positioning.

2 Methodology

The process is tested on a Locobot Robot (PyRobot [1] platform, developed
by Trossen Robotics). The robot uses a Intel Realsense camera for vision.
The process uses YOLOv3 algorithm for object detection. It uses Manhattan
World Assumption [2] for defining the floor as a horizontal plane and in 3D
world, all the pixels from the floor lie in a single plane.

2.1 Object Detection and ground object discovery

A YOLOv3 model takes an Image I(x,y) as input and predict the objects
present in the image. The output of the object detection is (H;, W, C;), which
are the dimensions of the bounding box for i object. For identifying the ground
located objects, bounding box dimensions play a crucial role. As shown in
figure 1 and figure 2, the pixel or pixel height (H;) which corresponds to

* PhD advisors: Prof. Domenec Puig
Prof. G. C. Nandi, ITIT Allahabad.
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the camera height world space are taken as reference for the calculation. The
peculiarity of this pixel height is its 2D nature i.e. the height of the world
points corresponding to this height will not change in image plane of a camera
for a 2D motion. The objects, whose lower side of bounding box is below this
line is considered as a floor located object. This assumption works well for
major cases due to low height of the camera.

Image Object

e
.,

Fig. 1. Side view for relation between camera view and environment.

(0.0)

__________

(H, W)

Fig. 2. Image plane information for object detection output.

2.2 Distance Measurement

After floor object identification, bounding box coordinates are used for calcu-
lating its position on ground. The height of the lower side of bounding box is
C;+ H; /2 and represented by 'H;’ (all the distances are measured with respect
to origin of the image plane (0,0) as shown in figure 2). The horizontal field
of view (FoV) of camera is '0}’, vertical FoV is ’,’, the height of the camera
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is ’h’, the angle made by lower side of object bounding box and lower side of
’0,” on camera lens is ’#,” and angle made by "H;” and lower side of ’8,’ is '6;’.
By perpendicular triangle law the distance between the camera and robot is
given by,

Z = h/tan(0y, — 0,) (1)

and '8}’ is calculated as,

O = 0, x H/(H — H) 2)

2.3 Object Size Measurement

The distance (Z) of the object from the robot will become the reference for
calculating the height, width and its placement in terms of left or right. The
projection of the object is considered perpendicular to the floor. This calcu-
lation considers the focal distance ’f’ of the robot camera and by using focal
distance and 'Z’ every point of the image plane can be mapped in the real
world by using,

(X,Y) =Z x ((z0,y0) — (i, y:))/ f (3)

where, (29, yo) are the coordinates of the centre of the image plane and (X,Y")
is the deviation of the point from the center line of sight of the robot camera.

3 Progress

This idea is used for Locobot robot and used for Semantic Mapping of indoor
environment. The results are good and the most interesting thing is its light
functionality. It can run on any kind of robot processor for calculating distance
with objects. In figure 3, distance prediction results are shown for images taken
from laboratory environment.

Fig. 3. Results for distance measurement of detected objects
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1 Introduction

The concept of quality of life (QOL) is difficult to operationalize. However,
the recent development in this area reports that improved quality of life is a
realistic and obtainable goal for everyone, including people with intellectual
disabilities (ID). This work aims to analyze the dataset recorded during an
interview of an individual, older people, or people with intellectual disabili-
ties. The interviewer asked questions related to the dimensions of QOL. Many
research works [1], [2] propose eight dimensions of QOL. These eight dimen-
sions are Emotional Well-being (BE), Interpersonal Relation (IR), Material
Well-being (BM), Personal Development (DP), Physical Well-being (BF), Self-
determination (AU), Social Inclusion (IS), and Rights (DR). Each dimension
has four to six objective questions related to that Dimension. Based on the
answers of each dimension of an individual, an interviewer who is a profes-
sional gives an index value of QOL. The index value shows the output of the
corresponding eight dimensions of the quality of life. We have interviewed a
total of twenty-six individuals and built a dataset. We use a multiple linear
regression model to analyze the dataset.

2 Methodology

This work is motivated to build a learning machine that can evaluate the
quality of life of an individual and, based on evaluation, suggest the possible
support in the particular Dimension. Figure 1 reports the complete layout
of the work. It starts with the individual’s interview and asking questions
related to the eight dimensions of QOL. The answer records based on 3 points
Likert scale and recorded the converted answers for each individual in every
eight dimensions. Furthermore, an expert gives corresponding support index
values based on input values. In step two, we recorded the data for each

* PhD advisor: Prof Domenec Puig, Prof G.C.Nandi
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individual. We prepare the data for a learning algorithm by pre-processing it.
After training, the model predicts the expected support index value for new
incoming QOL dimension values. Based on the support index value, we detect
the deficiencies in any dimension of QOL, and professionals make an action
plan to improve one or more aspects of QOL. This process collectively runs
timely and tries to enhance the quality of life of individuals, including the
person with intellectual disabilities.

] QOL Dimensions Values
Interview & QOL Index Value
Questions related
L}OL dimensions J BE .
—

Fig. 1. Complete architecture to evaluate Quality of Life of an Individual

QOL Index value

ID-1

ID-2

2.1 Dimension of Quality of Life and Support Intensity Scale

The development in this area motivates the dimension from striving to define
QOL to focusing its basic dimensions [1]. It shows that QOL is a multidi-
mensional phenomenon than an individual trait. People’s QOL is affected by
the interaction between personal and environmental factors. Therefore, Its
evaluation is based on subjective and objective measures. Recent research [3]
depicts the development of a new paradigm that integrates QOL with support
(QOLSP).

Dimension of Quality of Life Area of Scale of Support Intensity Scale
Emotional Well-being Health and Healthcare, Protection and defence, and Behavioral support need
Interpersonal Relations Social activities
Material Well-being Employment activities
Personal Development Homelife activities, life long learning
Physical Well-being Health and Healthcare, Exceptional medical need
Self-determination Protection and defence
Social Inclusion Community life activities, Social activities
Rights Protection and defense, Health and Healthcare

Table 1. Dimension of quality of life and area of the support intensity scale.

The multidimensional concept of QOL proposes the various factor to decide
the dimension of the QOL. These factors are independence, social participa-
tion, and well-being [2]. Based on these factors, dimensions are following shown
in Table 1. The support corresponding to these dimensions is also shown in
the second column of Table 1. These dimensions encompass every part of a
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person’s personality. Various indicators show that the area needs to work to
improve the quality of life dimension.

2.2 Multiple Linear Regression Model

MLR (Multiple Linear Regression) is a popular regression algorithm for solv-
ing scenarios with multiple input attributes. QOLSP contains eight input
dimensions, each with its own support index, and MLR predicts the corre-
sponding support index value based on these eight input dimensions of an
individual’s QOL. This algorithm is implemented using the equation below.

Vi = Wo + Wil Xig + Wol Xip + Wl Xig 4+ .. + W, X, + € (1)

Where Y; represents the support index, X; represents the QOL dimensions,
Wy represents the bias, and W), represents the slope coefficients for each QOL
dimension. The model error is shown by epsilon. We divided the dataset into
80 percent for training and 20 percent for testing.

3 Progress

This study utilizes a machine-learning system to predict the corresponding
support index value. Furthermore, with the assistance of dimension special-
ists, we must create an action plan that corresponds to the support value
and provide it to the individual with a matching action sheet. We calculated
train case accuracy and subsequently test case accuracy in the form of mean
absolute error, root mean square error, and R? score after training the model
with the training dataset, as shown in table 2.

Evaluation Matrices |Train Case|Test Case
Absolute Mean Error | 0.490262 1.350473
Root mean square error| 0.635070 1.472938
R? score 0.998192 0.991830

Table 2. Evaluation matrices for quality of life evaluation
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1 Introduction

We want to address the problem of Diabetic Retinopathy (DR) classification.
As a consequence of diabetes, the blood vessels of the eye may break and
generate small blood spots, hemorrhages and exudates. These lesions produce
vision loss and may even cause blindness if they are not detected and treated
at an early stage.

In this PhD thesis, the goal is to improve a DR classification model based
on a Fuzzy Random Forest (FRF) used in the Retiprogram system [2] [3]. It
uses the clinical data of the patients to assess their risk of developing DR.
This model is being tested by a group of ophthalmologists at Hospital Sant
Joan de Reus. The general results are good (with a sensitivity and a specificity
over 75%), but there are still many miss-classifications. Errors are mainly due
to the inherent ambiguity of the training examples (very similar patients can
belong to different classes) and to the high unbalance between both classes
(more than 90% of diabetic patients do not develop DR).

We are constructing a methodology to take advantage of the data of the
new patients which are treated at the hospital. We propose to modify the set
of trees that compose the FRF, which will allow updating the model without
retraining the base model from the ground up.

2 Proposed method

The proposed architecture is illustrated in Fig. 1. Each time a sufficiently
large set of new cases is collected, the updating method is applied to improve
the classification model.

As a first dynamic component, we consider the ensemble voting procedure
of the fuzzy random forest. Two methods are usually applied: majority and
weighted voting. They have both been studied.

* PhD advisor: Aida Valls Mateu
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As a second dynamic component, we have the new data collected for up-
dating the rules in the random forest. To improve results, the use of previous
miss-classified examples (i.e. errors) is proposed. Three different ways of deal-
ing with errors are studied, named: no errors, errors and all errors, depending
on which error examples are used during the dynamic updating.

Base model New model
training training
o T | ;— D;j .
cos-s =1 >1
Train base model ——> Er > Merge <

Dynamic update | _,

of the model Train new model
i>1 v

Model dynamic ¢ {FRF with m trees

update

NN 20 | > Epj |

EFRF with njtrees: | | T

Update metrics [«

Fig. 1. Architecture of the iterative learning of Fuzzy Random Forests

The overall updating architecture is composed of three steps. The first one
is not iterative, and the other two steps are run in iterations each time the
model has to be updated. The three steps are briefly explained next.

1. Base model training: The first stage consists on training the base model
with a large training dataset, T', obtaining n fuzzy decision trees, where n
is a large number, usually more than 100. During the construction process,
the out-of-bag samples of each fuzzy decision tree, are used to compute
for each of them their specificity and sensitivity. Those metrics are used in
the weighted voting, and in the update process. The training dataset can
also be used for testing, and the samples that are not correctly classified
are stored in Er. Those errors samples Fr are used in the following stage.
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2. New model training: Every time enough new samples D; have been
gathered, around 200 samples, a new training iteration ¢ is performed.
The merge process generates the dataset used to update the fuzzy ran-
dom forest, D, which depends on the method version. The errors version
merges the errors data from previous iterations with D;. For the first iter-
ation ¢ = 1, the Ep errors samples are merged. For further iterations, the
FEp; samples generated in the third step of the method are merged. The all
errors version also merges the training data D; from previous iterations.
Finally, the D] samples are used to train a new fuzzy random forest with
a lower amount of trees m, around 20. Their out-of-bag samples are also
used to compute the aforementioned metrics for each of the new trees.

3. Dynamic update: The m fuzzy decision trees trained in the previous
step are used to update the current model. They are added to it, and to
improve its performance, the worst fuzzy decision trees are removed. This
is fixed by a certain percentage p. To sort the trees and keep the best
ones, the weighted balanced accuracy is used. It is defined as an average
between specificity and sensitivity with a weighting factor «.

After pruning the worst trees, an additional update weights process can
optionally be performed. The weights computed using the out-of-bag sam-
ples are updated with the training data D) of the current iteration.

The resulting fuzzy random forest is set as the current model, and it is
taken as the new model to be used until a new set of cases is available,
and a new update iteration starts.

The errors of the updated fuzzy random forest model on the D) dataset
may be also retrieved and stored in Ep; as it was done for the base model
with Ep, so they can be used in subsequent iterations.

The use of error samples has two purposes. On the one hand, to increase
the size of the training set D} and, on the other hand, to show again this
wrongly classified cases to the model in order to be able to build new rules
that cover them appropriately.

3 Experimental results

Experiments are mainly done with the DR dataset obtained from the hospital,
which is continuously increased with the new visit’s to the patients. However,
to validate the methods proposed, we have also used the occupancy dataset
[1] from the UCI public repository, in which the occupancy of an office room
is predicted.

The data from both problems is split in 3 different datasets: training, vali-
dation and testing. The validation set is split in different batches to simulate
the new data that continuously arrives to the system. While, the testing set
is used after each iteration to check the performance of the updated FRF.
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Fig. 2 shows the evolution of the updated model in the test set after each
iteration. The metrics on the DR dataset gradually improve during all itera-
tions. Moreover, the sensitivity is the metric which increases the most, as it
was desired. In the occupancy results, the sensitivity gradually improves, and
the specificity ends slightly decreasing. Even though it is not as desired as
improving both metrics, it is still desired for our use case.
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Fig. 2. Metrics on the test set. Diabetic Retinopathy (left) and Occupancy (right)
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1 Abstract

Depth estimation is a challenging task of 3D reconstruction to enhance the
accuracy sensing of environment awareness. Recently, convolutional neural
networks (CNN) have demonstrated their extraordinary ability to estimate
depth maps from monocular videos. However, traditional CNN does not sup-
port a topological structure, and they can work only on regular image regions
with determined size and weights. On the other hand, graph convolutional net-
works (GCN) can handle the convolution on non-Euclidean data, and it can be
applied to irregular image regions within a topological structure. Therefore,
to preserve object geometric appearances and objects locations in the scene,
in this work, we aim to exploit GCN for a self-supervised monocular depth
estimation model. Our model consists of two parallel auto-encoder networks:
the first is an auto-encoder which extract the feature from the input image and
on multi-scale GCN to estimate the depth map. In turn, the second network
will be used to estimate the ego-motion vector (i.e., 3D pose) between two
consecutive frames based on ResNet-18. The estimated 3D pose and depth
map will be used to construct the target image.

2 Introduction

In the Artificial Intelligence (AI) field, especially deep learning (DL) networks
have accomplished high performance in various depth estimation and ego-
motion prediction tasks, and nowadays, it is steeply expanding. The impor-
tance of depth estimating, as a pull factor for the entry of modern technolo-
gies into self-driving vehicles [1], object distance prediction [7]. Besides, depth
maps can be used for underwater machine vision and robotic perception [9].

The stereo vision system is one of the common techniques is used for depth
estimation. However, in order to save cost and computational resources, many
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methods have been presented to perform depth estimation based on a monoc-
ular camera. The monocular depth estimation methods can be divided into
two categories in terms of the learning approach: supervised learning meth-
ods [3] and unsupervised learning methods . Most of existing DL monocular
depth estimation networks use convolutional neural networks (CNN) to ex-
tract the feature information. However, CNN is limited, since it does not
consider the characteristics of the geometric depth information and object lo-
cation and contextual features in the scene. Besides, there is recently a need
to extend deep neural models from Euclidean domains achieved by CNNs to
non-Euclidean domains . Thus, the research community has started to ob-
serve the importance of DL networks based on graphs [@] The effectiveness of
the graph convolution network (GCN) has been proved in processing graph
data on the tasks of classification and segmentation. Thus, in this work, we
propose a novel architectural DL network based on GCN, that can help to
advance monocular depth estimation.

GCNDepth

FeatDepth onoDepth2

Fig. 1: Depth from a single image. GCNDepth (our self-supervised model),
produces high quality depth maps with clear background and sharp edges
compare to state of the art self-supervised depth estimation.

3 Summary

Based on the brief survey above, and to avoid depending on ground-truth
and more generalized monocular depth estimation, we will propose a self-
supervised learning approach in this work. Our method will estimate the
depth images and the ego-motion to increase the constraints of depth predic-
tion. For monocular depth estimation, the relationship between object location
and visual and contextual features in the scene is significant to preserve the
objects’ boundaries. Most self-supervised monocular depth estimation meth-
ods [5] are based on CNN-based networks that extract appearance visual fea-
tures from whole scene images. However, in most cases, CNN-based networks
yield blurred edges and boundaries of the objects. We used a standard CNN
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encoder for visual feature extraction and a GCN decoder for reconstructing
depth maps. The reason for using GCN as a decoder network is to improve the
detection of sharp boundaries and reduce the background noise to compute
precise depth maps with full objects details compared to the self-supervised
state-of-the-art model. For the CNN-based encoder, most monocular depth
estimation used The ResNet-50 network as a backbone for feature extraction,
and they achieved high performance. Thus, we similarly use ResNet-50 for
the depth estimation network in our encoder. For ego-motion estimation, we
used the same network proposed in [§] that is based on ResNet-18 as a back-
bone. In order to obtain more structural details in the scene, our approach will
use a combination of different warping errors proposed in the state-of-the-art,
such as the reconstruction error presented in [10] to minimize the errors in
the reconstructed image, the photometric reprojection error proposed in [5] to
optimize the values which provide matching pixel intensities between the tar-
get and reconstructed images. Finally, a combination between discriminative
and curvature errors [8] to highlight geometric characteristics of the objects
and textured regions in the scene image.

| |

A

o‘ N Lpy

<

Source
Image

Target
Image

Fig. 2: Schematic illustration of the whole framework

4 Overall Pipelines

The proposed method consists of two main networks. The first network, called
DepthNet. The source image is an input of the DepthNet, and the output is
the depth map. The second network is PoseNet, a pose predictor to estimate
the ego-motion vector of the source and the target images (in our case, a
consecutive image). The output of PoseNet is the relative pose between the
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source and target images. These two main networks provide geometry infor-
mation to provide point-to-point correspondences of the reconstructed image.
The whole architecture of our model is illustrated in Fig.

5 Discussion

The performances of our model compared with the state-of-the-art solutions is
summarized in Table[I] As shown in Table[I] the GCNDepth method achieved
the highest performance in terms of Abs-Rel, Sq-Rel, second and third ac-
curacy of (d2,03) evaluation metrics. In addition, the proposed method also
achieved second best results in RMSE, RMSE-Log and first accuracy of (1)
with a slight difference of 0.003 with RMSE-log, and 0.5% with §; compared
to the highest results achieved by [8]. In general, the model of Featdepth [§]
and our model, GCNDepth, provided comparable results and they outperform
the other tested methods.

Although, the Featdepth model achieved similar results to our model, the
GCNDepth model yields a 40% reduction in the number of trainable pa-
rameters compared to the Featdepth model. Where the GCNDepth model
has trainable parameters of 48,220,954, in turn the Featdepth model has
79,681, 406. Since the Featdepth model has an extra deep feature network
for feature representation learning to cope with the geometry problem of self-
supervision depth estimation. The comparable results show that the use of
GCN in reconstructing the depth images can improve the photometric error
that appeared in the self-supervision problem without using the feature net-
work as proposed in [8]. The results have shown in Table supported that the
use of GCN in estimating depth maps from a monocular video can yield depth
maps outperforming or matching the state of the art on the KITTI dataset.

Table 1:
Comparison of different methods on KITTI dataset. Best results are in bold
blue and second best results are in bold red color.

\ Lower Better \ Higher Better
Method  [Abs-Rel|Sq-RelRMSERMSE-Log| 4; | 2 | 83
Monodepth2 [5]| 0.115 0.882  4.701 0.190 0.879 0.961 0.982

FeatDepth [8] | 0.104 0.729 4.481 0.179 0.893 0.965 0.984
GCNDepth | 0.104 0.720 4.494 0.181 0.888 0.965 0.984
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1 Introduction

The rapid advancement and development of new digital technologies has
changed the dynamics of our daily lives by providing us with new services
and products. Among the services, we can stress the social connectivity, in-
formation storage and location (GSP and mapping). Regarding the products,
Smartwatches and Smart Home Devices with an Intelligent Personal Assistant
(IPA) are two examples that are becoming more popular worldwide. These
services and devices generate huge amounts of information, which is processed
by the Service Providers (SPs) in order to improve and develop new products.
We cannot however ignore that also represents an important source of revenue
for the SPs. As a result, their products can be cheaper or even free [1]

The processing of the aforementioned information may result in extraction
of sensitive information which can jeopardise the users’ privacy. Thus, the EU
took a decisive step with the General Data Protection Regulation (GDPR) [2],
that came into effect from May 2018, in order to protect users’ rights. The
GDPR wants to mitigate the abuse of massive collection and processing of
users’ personal data. The regulation guarantees specific privacy rights to Data
Subjects (physical or legal entities to which the personal data belongs) ensur-
ing that personal data ”can only be gathered legally, under strict conditions,
for a legitimate purpose”; as well as bringing full control back to the data
owners.

Under GDPR, companies are required to prove compliance in case of suspi-
cion of a violation or when a Data Subject (DS) lodges a complaint with the
Supervisory Authority (SA). However, the legislative text does not specify
how to transparently demonstrate that the information collected and its pro-
cessing fulfills with the regulation. In the same way, DSs need tools to know
and control what happens with their personal data. So, individuals have no
tools to know transparently and easily which data is being collected and pro-
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cessed and for which purposes. As a result, DSs are mostly limited to giving
their consent beforehand, in a way that is based on an abstract clause. In this
regard, the current GDPR-compliance verification architectures generally de-
pends on each service provider, i.e. they are specific and centralized for each
of them. Due to this reason, critical concerns on the lack of transparency have
been imposed [3].

It is therefore necessary to deploy a framework in order to enable the agree-
ment verification between the users (DS), Data Controllers (DC) and Data
Processors (DP) in relation to the data custody and processing. At the same
time, the users should be capable to know and control which data is being
collected, who is processing it and for which purposes. From the DS point
of view, the main benefit is a way to manage his personal data, which does
not depend on the DC, i.e. the tool can be used to manage all agreements
with SPs. In addition, from a DC and DP point of view, the main benefit is
a proof that can be presented to SAs showing that data was obtained and
processed in a GDPR compliant way. So, the proof should have the following
properties: i) public access; ii) verifiable; iii) authentic; iv) immutable and; v)
non-repudiable. According to these properties, some authors have proposed
the use of Smart Contracts (SCs) implemented over the blockchain technol-
ogy (BC) as a general-purpose data management [4-10]. This is a promising
technology in GDPR~compliant personal data management.

2 Contributions

Our first contribution to this topic is a lightweight blockchain-based GDPR-
compliant personal data management system, which provides public access
immutable evidences showing the agreements between a Data Subject and
a Service Provider about DS’s personal data. Compared to other existing
research works, our work proposes a new conceptual design and system archi-
tecture for human-centric personal data management, by using BC and SCs
technology that is in compliance with the GDPR (see Figure 1). Our work
differentiates between the data collection and data processing concepts by
identifying the Controller and Processor actors and treating them in a related
but separate way. We also try to reduce the overhead on DSs, as if they need
to have a wide knowledge on BC technology or they have to be constantly
operating over our platform, it will be hard to be accepted and used by the
community.

On the current work we are extending the preliminary scheme presented
n [11]. In particular, the new scheme has been partially re-designed to be
deployed more conveniently in a realistic setting. This includes: i) a modi-
fication in the process flow that makes the DS the main responsible of her
own personal data and the initiator of the whole proposed protocol; ii) the
use of the well-known XACML framework to improve the robustness of the
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access control process to DSs collected data; and iii) a refinement in the use
of the SCs that allows us to include all the purposes of a certain DP in a
single contract, thus, improving the general efficiency of the proposed system:;
Moreover, in the new proposal, we have done a more detailed experimental
study, including the implementation of a realistic use case.

Future Work

Every actor needs an asymmetric key to use the proposed system, as digital
signature is used to interact with Smart Contracts. The public key (PK) can
be seen as an ID of the actor itself, so in order to keep DSs’ anonymity
to possible linkage attacks, a new key pair is used for every consent with a
different Data Controller.

In order to make the asymmetric keys management abstract for DSs, as future
work, we pretend to complement our work with a tool that allows them to
generate, store and manage all asymmetric keys used to interact with the
proposed system, in a transparent way. This tool must be multi-platform,
secure and tramper-resistant as holds all IDs (PKs) a Data Subject uses in
our system and their associated secret keys to interact with the generated
agreements.
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1 Introduction

Early diagnosis of retinal lesions helps reduce the risk of visual loss and blind-
ness. Ophthalmologists inspect eye fundus images to detect the signs of com-
mon eye diseases like diabetic retinopathy (DR) and glaucoma. Figure 1 shows
the most common types of lesions that may affect the retina. The yellow spots
in the retina region stand for hard exudates (HX), pale yellow or white ar-
eas with ill-defined edges stands for soft exudates (SX), tiny outpouchings of
blood stands for microaneurysms, while the bleeding that occurs in the retina
is known as haemorrhages.

Microaneurysms

o

Hemorrhages i Hard Exudates

Fig. 1. Retinal lesions types.

Indeed, ophthalmologists dedicate many hours to perform manual analysis
of hundreds of fundus images, which represents a high cost considering man-
power needed and salaries [1], [5]. On the other hand, artificial intelligence-
based computer-aided diagnosis (CAD) systems, if trained properly, can an-
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alyze hundreds of fundus images and provide a diagnosis as experienced oph-
thalmologists [2].

In this research, we leverage emerging deep learning technologies such as
U-Net and Fully Convolutional Network (FCN) to automatically detect and
segment various lesions in eye fundus images.

2 Methodology

In this study, we use a deep learning-based model termed gated skip con-
nections [4] to distinguish and segment hard and soft exudates properly in
fundus images. The model comprises five encoder blocks with two convolu-
tional layers and five decoder blocks with four convolutional layers (Figure 2).
In this model, an efficient skip connections technique is combined with the
U-Net architecture’s decoder to retrieve eye-lesion-relevant information while
disregarding irrelevant features.

Predicted Mask

Input Image

A
256x%384%2

256x384x3 Output layer

256%384x32

-------------------------- 256%384x32 - -~ -- - -ooooonosoo]

------------- 64%96x128 -~~~ -- ===~

------- 32%48x256 -~~~ -

“16%24x! 512
' 2Conv2D + BN + ReLU 0

ﬂ MaxPooling "*es

‘ Decoder with efficient skip connection ’?«-5
Fig. 2. Eye lesion segmentation using deep gated skip connections.

The Indian Diabetic Retinopathy Image Dataset (IDRiD) [3] is used to
train and evaluate the eye lesion segmentation algorithm. IDRiD provides
81 fundus images of the retina with excellent annotations for the optic disk,
microaneurysms, hemorrhages, hard and soft exudates. The fundus photos are
4288 x 2848 pixels in size. The database is divided into two standard sections
for training and testing: 54 photos for training and 27 images for testing. It
should be mentioned that the photos may depict a variety of different sorts of
lesions. To take benefit from the high resolution of the images while minimizing
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computing costs, we split each image into 12 splits during the training and
testing phases. Data augmentation techniques are used to increase the number
of training images. The model is trained using the binary cross-entropy loss
function and the ADAM optimizer.

Two segmentation models for eye lesions have been trained: one of them
for hard exudates and another for soft exudates.

3 Preliminary results and future work

Table 1 presents the results of the two segmentation models and the state-of-
the-art models. With a hard exudates segmentation task (HX), the proposed
eye lesion segmentation model obtains F1-score and area under the precision-
recall curve (AUPR) of 75.9 and 84.8%, respectively. The Fl-score of the
proposed model is 0.7 points better than the method proposed by Xiao et al.
[6]. A soft exudates segmentation task (SX) achieves an F1-score and AUPR of
68.7 and 75.0%, respectively. As one can see, the proposed model outperforms
HEDNet+cGAN [6], and Saha et al. [7].

Table 1. Preliminary results and comparison

Lesion Method Metrics (%)
F1 |AUPR
Hard exudatesf HEDNet+cGAN [6]|69.0| 84.1
Saha et al. [7] 87.0

Proposed 75.9| 84.8
Soft exudates | HEDNet+cGAN |44.0| 484
Saha et al. - 71.0
Proposed 68.7| 75.0

Figure 3 shows a sample of results of HX (top) and SX (bottom). The
segmentation models views result is much closer to the ground truth.

Input Image Actual Mask Predicted Mask

Fig. 3. Segmentation results.
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The future work will include using meta-learning deep-learning-based tech-

niques to improve the segmentation results and performing segmentation of
the other types of eye lesions like microaneurisms and haemorrhages.
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1 Abstract

Fundus image quality is critical to diagnosing retinal diseases since image
clarity is significant in classifying such images. This work presents a new field-
friendly multitasking framework for automatically interpreting base image
quality based on the autoencoder network used to reconstruct the input image.
The proposed system provides an interpretable quality assessment and quality
visualization. In particular, the present application can detect the optical
disc and pure structures as features to help the evaluation by coding. The
experimental results have shown the superiority of the proposed approach
over various modern methods.

2 Introduction

Modern medicine highlights big data to assess fundus image quality based on
the human visual system. In ophthalmology, the use of fundus photography
has been highlighted, which has given rise to indispensable applications of
portable fundus cameras. However, in fundus photography, image quality is
more susceptible to general quality distortions, such as color distortion, un-
even lighting, low contrast, and stuttering. Digital fundus imaging is used to
diagnose various eye disorders such as diabetic retinopathy (DR) [1], cataract
[2], age-related macular degeneration (AMD) [3], and glaucoma [4].

Scientists focus on ways to obtain effective medical help for a large number
of patients. However, the number of eye specialists available needed fails to
meet the current demand . To address the lack of the required ophthalmolo-
gists, telemedicine [5], and computer-aided diagnosis (CAD) [6] can be used
at eye diseases diagnosis and prognosis.

All CAD systems of eye disease diagnostic systems are based on the qual-
ity of retinal images. The results of CAD systems with low-resolution images
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degrade their decision-making performance. Thus, a trustworthy assessment
of retinal fundus image quality is needed to improve the early detection of
eye diseases. In this work, we propose a framework based on deep learning
techniques, mainly a deep autoencoder network, to develop a reliable fundus
image assessment. The model consists of two cascading networks: an autoen-
coder network for self-supervision based on image reconstruction and a deep
CNN classifier for classifying the quality of the input image. In the autoen-
coder network, a multi-layer encoder will be used to extract local and global
features related to the quality of retinal images and decode them to recon-
struct the same input image. Then the features obtained from the encoding
network are fed to the classifier to classify the quality of the network input
images.

In most CAD diagnosis systems After training the model, we analyze their
representations via attribution and other interpretability methods. Our con-
tributions to this paper are as follows:

e We propose an auto-encoding network to correctly recognize the repre-
sentative depth features of fundus images via the cryptographic network.
The decoder part is used to reconstruct the input bottom image.

e We suggest a CNN classifier fueled by the features learned by the encoder
network to classify input fundus images as gradable or ungradable.

e We suggest using a measure of mean square error (MSE) as a loss func-
tion To train the automatic encryption network. The MSE loss function
calculates the sum of Square the distance between the input image and the
image reconstructed by the decoder. Also, we use the binary entropy loss
function to train the CNN classifier.

e We propose to integrate the losses of the two autoencoder networks and
the CNN classifier into a single learning framework to solve the fundus
image gradability problem.

e We apply feature attribution and other interpretability methods to under-
stand the representation of the fundus images in both models.

e Our interpretability analysis indicates that the autoencoder loss helps the
classifier focus more on the relevant structures of the fundus images, such
as the fovea, optic disc, and main blood vessels. The normal model, on the
other hand, uses more arbitrary input regions to determine the gradability
of the image.

3 Proposed Model

Figure 1 gives a high level overview of the training and testing phases of our
proposed model. In the first training model,we used an autoencoder net- work
consisting of two serial networks: the encoder and the decoder.We used the
encoder network to extract the high-level features of the model input fundus
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images. Next stage after feature extraction these features will be fed to the
decoder network so as to rebuild the same input image again. In the next
stage,another network, the classifier network, will be fed with the features
obtained from the autoencoder network to classify the retinal image quality
into two categories: gradable and ungradable. The size of the input image
was resampled to 480x480. In the testing phase of the model, we used only
the trained encoder and classifier grid in order to classify the image quality
of the fundus mesh in addi- tion to entering it into the interpretation phase,
which is an important phase in testing medical images and classifying them
as gradable and ungradable .

Mse|Loss

ngradable

Input Image
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Fig. 1. General overview of the autoencoder model in train stage.
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Ungradable

Vector
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Fig. 2. General overview of the autoencoder model in test stage.
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4 results

Based on the two datasets, Table 1 and 2 show the results (i.e, Accuracy, Sen-
sitivity, Specificity, Precision and F'1 score) of MCF-Net and four variations
of the proposed systems with the four loss functions. As shown in Table 1,
the proposed model with its four variations outperformed the performance of
MCF-Net in terms of the five evaluation matrices. Among them, our model
with MSE as a loss function yielded the best results with F'1 score, sensitivity
and specificity of 0.88, 0.83 and 0.91, respectively. For instance, our model
with MSE yielded an improvement of 8% with F'1 score compared to the
MCF-Net. In turn as shown in Table 2 and with the second dataset EyeQ),
the proposed model and its variations also outperformed the results with
MCF-Net. Our model with MSE achieved significant improvements of 16%,
10% and 38% with F'1 score, precision and specificity, respectively. Besides, a
small improvement of around 1% with sensitivity.

Table 1. Comparison between the proposed model and MCF-Net [7] on the Eypces
dataset [§]

Accuracy|Sensitivity|Specificity |Precision|F1-Score
MCF-Net Model 0.81 0.64 0.95 0.84 0.80
Our Model - SSIM Loss 0.815 0.95 0.65 0.84 0.82
Our Model - MS-SSIM Loss| 0.86 0.94 0.76 0.87 0.86
Our Model - MAE Loss 0.85 0.84 0.86 0.85 0.85
Our Model - MSE Loss| 0.875 0.83 0.91 0.88 0.88

Table 2. Comparisons of the proposed model and state-of-the-arts on (EyeQ) dataset

[7]
Accuracy |Sensitivity |Specificity|Precision|F1-Score
MCF-Net Model 0.865 0.946 0.51 0.80 0.75
Our Model - SSIM Loss 0.93 0.94 0.90 0.88 0.90
Our Model - MS-SSIM Loss| 0.935 0.93 0.91 0.94 0.93
Our Model - MAE Loss 0.94 0.95 0.88 0.90 0.91
Our Model - MSE Loss | 0.942 0.954 0.89 0.90 0.91

5 Interpretation of Model Features

the proposed model Shown in the Figure 3 interprets fundus images with
scores with explanability to help doctors and medical care workers distin-
guish gradable and non-estimable images based on grades and interpretations
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that have been adopted after sending them to the General Hospital in Tar-
ragona,spain and presenting them to a group of experts to confirm the results
of the model classification Which has proven to be successful and superior to
the normal model.

ENCODER

explainability method
Input Image -

Gradien Ungradable
r=3

GradCAM

Gradable
Output Image

Classifier

Fig. 3. General overview of the autoencoder model with explanation.

We use various interpretability methods to understand the Normal and Au-
toencoder models and compare their internal representations. Our approach
employs:

e Saliency map methods such as GradCAM visualizations to understand the
relevance of the input regions [9] .

6 Conclusions and future work

In our research paper, we proposed a supervised deep learning model based
on an autoencoder network. The autoencoder network is able to generate the
same network input as fundus images to correctly identify the visual features
of eye image quality. Our model also includes a classifier fed by features ex-
tracted from the encoder network to rank the quality from the retinal image
to Gradable and Ungradable. In addition, by analyzing the interpretability
analysis, we show that the gradability models mainly focus on the presence
and type of blood vessels in the fundus image. Other key structures such as
the optic disk and macula seem to play a lesser role than expected. Finally,
via this analysis, we also found that the addition of the decoder and corre-
sponding loss helps the proposed model focus more on relevant structures of
the fundus image



6

Saif khalid

References

[1]

2]

M. R. K. Mookiah, U. R. Acharya, C. K. Chua, C. M. Lim, E. Ng, and A. Laude,
“Computer-aided diagnosis of diabetic retinopathy: A review,” Computers in bi-
ology and medicine, vol. 43, no. 12, pp. 2136-2155, 2013.

L. Guo, J.-J. Yang, L. Peng, J. Li, and Q. Liang, “A computer-aided healthcare
system for cataract classification and grading based on fundus image analysis,”
Computers in Industry, vol. 69, pp. 72-80, 2015.

M. U. Akram, A. Tariq, S. A. Khan, and M. Y. Javed, “Automated detection of
exudates and macula for grading of diabetic macular edema,” Computer methods
and programs in biomedicine, vol. 114, no. 2, pp. 141-152, 2014.

G. D. Joshi, J. Sivaswamy, and S. Krishnadas, “Optic disk and cup segmentation
from monocular color retinal images for glaucoma assessment,” IEEFE transactions
on medical 1maging, vol. 30, no. 6, pp. 1192-1205, 2011.

L. Shi, H. Wu, J. Dong, K. Jiang, X. Lu, and J. Shi, “Telemedicine for detecting
diabetic retinopathy: a systematic review and meta-analysis,” British Journal of
Ophthalmology, vol. 99, no. 6, pp. 823-831, 2015.

C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal,
and D. Usher, “Automated detection of diabetic retinopathy on digital fundus
images,” Diabetic medicine, vol. 19, no. 2, pp. 105-112, 2002.

H. Fu, B. Wang, J. Shen, S. Cui, Y. Xu, J. Liu, and L. Shao, “Evaluation of reti-
nal image quality assessment networks in different color-spaces,” in International
Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 48-56, Springer, 2019.

B. Graham, “Kaggle diabetic retinopathy detection competition report,” Univer-
sity of Warwick, 2015.

G. Ras, M. van Gerven, and P. Haselager, “Explanation methods in deep learning:
Users, values, concerns and challenges,” in Ezxplainable and interpretable models
in computer vision and machine learning, pp. 19-36, Springer, 2018.



Radiomics-based computer-aided diagnosis system
for prostate cancer classification in MRI images

Eddardaa Ben Loussaief *

Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili
Tarragona, Spain
Eddardaa.benloussaief@urv.cat

1 Abstract

The use of magnetic resonance imaging (MRI) in prostate segmentation, diag-
nosis, and treatment is critical. Using MRI images of all modalities, computer-
aided diagnostic (CAD) systems based on machine learning can assist doctors
in detecting prostate cancer and its aggressiveness at an earlier stage. One
of the most important stages of CAD systems is automatic prostate gland
delineation. With medical images, deep learning has lately exhibited encour-
aging segmentation outcomes. We examine the current state-of-the-art of deep
learning-based techniques for prostate segmentation in MRI images and ex-
plain their benefits and shortcomings in this paper. In addition, we present a
new approach for classifying prostate biopsy malignancies in MRI images. We
want to leverage the segmentation results to extract deep radiomics features
from MRI prostate images in this way.

2 Introduction

The most prevalent malignant tumor in men worldwide is prostate cancer.
In the diagnosis and treatment of prostate cancer, accurate detection of the
prostate gland utilizing medical scans is critical. Deep learning-based algo-
rithms have made significant success in a variety of domains, including com-
puter vision, natural language processing, and medical imaging diagnosis, ac-
cording to early attempts. The potentials of deep learning-based approaches
for medical imaging segmentation are still being investigated in the literature.
And, as it is observed, the findings of automated prostate detection are still
difficult to come by.

The main goal of this study is to compare current deep learning-based
approaches for prostate cancer detection in MRI scans. Each segmentation

* PhD advisor: Dr. Mohamed Abdel-Nasser, and Dr. Domenec Puig.
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model’s advantages and disadvantages are highlighted. The results of seg-
mentation on three public datasets will be presented: Promisel2, ISBI Chal-
lenge2013, and ProstateX. To evaluate the performance of the prostate cancer
detection algorithms, we employed the dice coefficient and Hausdorff Distance
evaluation measures. The use of deep radiomics features acquired from MRI
images to distinguish benign from malignant prostate cancers is our novel
contribution.

3 Methodology

The recommended methodology [l|for our investigation is depicted in Fig-
ure 1 as an overview. We have trained the deep learning models to segment
prostate cancer from MRI scans. The training is accomplished on a set of pub-
lic datasets such as Promisel2 [5], ISBI2013 [7], and ProstateX [2]. Both 2D
and 3D segmentation models are essential to our strategy. We employed the
U-Net [9] and 2D-Unet [3] models for two-dimensional segmentation. 3DFCN
[3], 3D-Unet [1], and MS-Net [6] have all been trained for 3D segmentation.

We separated the data in our experiments into training and testing data. To
boost the amount of training data, we used a data augmentation approach.
To evaluate the models’ performance, we compute the Dice coefficient and
Hausdorff distance. The models discussed above were tested on the ProstateX
citer31 dataset. This stage lays the groundwork for our ultimate goal, which
is to extract deep learning-based radiomics to categorize malignant malignan-
cies.
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Fig. 1. The schematic illustration of the proposed methodology.
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4 Results

We used the Promisel2 and ISBI2013 datasets to train multiple segmentation
models in order to assess their performance. The segmentation findings in
terms of the Dice coefficient and Hausdorff Distance are presented in Tables
1 and 2.

Table 1. Comparing the performance of the segmentation models using ISBI2013
dataset.

Table 2. Comparing the performance of the segmentation models using Promisel2

dataset.
Model DSC+std |HD(mm)+std
U-Net[0] |0.880=0.041 | 17.690 £2.087
3D-FCNJ8] [0.790 £0.050| 12.910 +4.005
2D-Unet [3]|0.899 £0.021| 7.661 £3.924

Model DSC+std |HD(mm)+std
MS-Net [6]]0.899 +1.960| 9.511 +£4.011
2D-Unet [3]|0.901 £0.015| 6.030 +3.082
3D-Unet[4] |0.722 £0.020| 17.761 +2.924

With the ISBI and Promisel2 datasets, the 2D-optimised Unet delivers
the best dice coefficient, as shown in Tables 1 and 2. The Hausdorff Distance
(HD) of the 2D-Unet model is 6.03 mm. These findings show that the 2D-Unet
model also produces accurate segmentation results on the ProsateX Dataset,
as shown in Table 3.

Table 3. Segmentation result on prostatex dataset.

5 Conclusion

Model DSC+std [HD(mm)+std

U-Net[9] 0.791£0.151| 17.020 £2.884
3D-UNet [4](0.701 +0.078| 18.001 £3.108
3D-FCN [8] [0.721 £0.047| 13.411 +5.264
2D-UNet [3] |0.898+0.051| 7.690 +£2.987

A comparison study of the state-of-the-art of deep learning-based segmenta-
tion algorithms for prostate cancer in MRI images has been reported. Different
measures, such as the dice coefficient and Hausdorff Distance, were utilized
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to evaluate the performance of the evaluated models. The deep radiomics will
next be extracted and fed into a classifier to distinguish between prostate
cancer groups (e.g., benign or malignant).
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1 Introduction

Breast cancer is one of the leading causes of cancer related death for women
worldwide and poses a growing health problem, the most urgent is to diag-
nose breast cancer in early stage. In the last decades, computer-aided diag-
nosis (CAD) systems have been introduced to help for physicians. It doesn’t
only create and analyze images, but also becomes an assistant and helps doc-
tors with their interpretation. Deep learning methods, especially convolutional
neural networks (CNNs), have been successfully applied to lesion segmentation
in breast ultrasound (BUS) images. In our research, we employ state-of-the-art
deep learning-based semantic segmentation for breast tumor segmentation in
ultrasound images. An example of the benign and malignant tumors is shown
in Fig.1.

Fig. 1. begnin tumor malignant tumor
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2 Problem Statement

Semantic image segmentation, which assigns per-pixel predictions of object
categories for the given image, is a fundamental problem in computer vision.
In the last years, many methods achieved an impressive result in the image
segmentation problem, however the collection of labeled data for the task of
semantic segmentation is expensive and time-consuming, as it requires dense
pixel-level annotations. While deep CNNS based semantic segmentation ap-
proaches have achieved impressive results by using large amounts of labeled
training data, their performance drops significantly as the amount of labeled
data decreases [1].

Many deep learning architectures have been proposed to solve segmenta-
tion problem in the medical images like FCN, SegNet UNET, and GAN [2].
The UNET architecture [3] is the state-of-the-art in the medical image seg-
mentation. UNET was the first architecture designed especially for medical
image segmentation. It achieved a good result on the small dataset. UNET
has encoder-decoder structure, which reduces the spatial dimension to ex-
tract features and then leverages up sampling to recover spatial extent. so
it uses skip connections to preserve the spatial information, which is help in
improving the segmentation task. The Encoder-Decoder architecture [3] is
a neural network structure based on FCN improvements. The architecture is
mainly composed of two parts, in which the encoder captures deep semantic
information through several down-sampling processes; the decoder part grad-
ually restores the space and detail information of the input image through
several up-sampling operations. Recently, many deep learning based models
have been proposed for breast tumor segmentation in BUS images, especially
fully convolutional network (FCN) [4] and U-Net, have been successfully ap-
plied to this field and achieve outstanding performance for instance, Yap et
al. [5] developed several FCN-based variants for the semantic segmentation
of breast lesion in BUS images. With a dataset of 113 malignant and 356
benign BUS images, they achieved a dice score of 0.7626 on benign. Lesions
whereas achieved 0.54 on malignant Lesions. Almajalid et al. [6] modified
and improved U-Net for lesion segmentation based on the contrast enhanced
and speckle-reduced BUS images. With a dataset of 221 BUS images, they
achieved a dice score of 0.825.

However, breast tumor segmentation in BUS images segmentation remains
an open problem due to the poor image quality and large variations in the
sizes, shapes, and locations of breast lesion. In our research we used different
semantic segmentations architectures to segment breast tumors in image. we
compared the performance of different loss functions with different semantic
segmentation models.
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3 Methodology

In our research, we developed breast tumor segmentation models based on
deep learning CNN models namely UNET and RESUNET with different loss
functions. Specifically, we used various loss functions in order to check which
one is more suitable to our data set and more effective, we chose to use them
with UNET model, the data set used in this research is provided by UDIAT
Diagnostic Centre of Sabadell, Spain. the size of the data set were 163 images
with its grounds truth images. We divided the dataset as 113 images as train
data and 50 images as test data, for training, we have used batch size of
100 and Adam optimizer with learning rate 0.0001 and with 20 epochs, and
standard data-augmentation techniques (rotation range, width shift range,
height shift range, shear range, zoom range, and horizontal flip) are applied,
after we performed the data augmentation on the training dataset, the training
dataset is increased to 2260 images. We have performed experiments using
different loss functions, the loss functions can be defined as follow:

1. Cross entropy measure of the difference between two probability distri-
butions for a given random variable or set of events

LBCE (y,y") = — (ylog ("y) + (1 —y) log (1 — ¢")) 1)

2. Dice Coefficient loss measure of overlap between the predicted sample
and targeted sample, it’s used for the binary data

Dice =1—-2|ANB|/|A| + |B| (2)

3. Focal Loss It is an improved version of Cross-Entropy Loss (CE) It
down-weights the contribution of easy examples and enables the model to
focus more on learning Hard examples. It works well for highly imbalanced
class Scenario. So an extra parameter added (1- pt) to the cross-entropy
loss, with a tunable focusing parameter 0. So focal loss can be defined as

FL(pt) = —at(1 — pt)ylog(pt) (3)

4. Tversky loss It’s a generalization of Dice’s coefficient. It adds a weight
to FP (false positives) and FN (false negatives)

5. Boundary with dice Boundary loss, which takes the form of a distance
metric on the space of contours, not regions. This can mitigate the dif-
ficulties of highly unbalanced problems because it uses integrals over the
interface between regions instead of unbalanced integrals over the regions
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4 Preliminary results and future work
We evaluated the segmentation performance of the proposed experiments are

conducted on the UNET and ResUNET, and UNET outperformed the
ResUNET since it achieved 0.823, whereas the ResUNET achieved 0.767

Fig. 2 shows the comparison results of the two approaches

input Ground Truth _ RESUNET

Fig. 2. Example of the predicted segment of the breast tumor for both UNET and
ResUNET models Note: Cyan (TP) Red (FP) Yellow(FN) Background (TN)

We decided to evaluate the loss functions with UNET model since its out-
performed the ResUNET model, the Table 1 shows the performance of the
model with each loss function, the tversky loss function with tuned hyper-
parameter is outperformed the remaining mentioned loss functions
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Methods Accuracy|Dice|IOU (jaccard) |Sensitivity|Specificity
Cross entropy 0.980 0.823]0.721 0.663 0.997
DICE COEF 0.9976 0.849|0.738 0.806 0.997
Tversky ( alpha=0.3,beta=0.7,smooth=1e-6)|0.9967 0.861]0.755 0.859 0.9972
Focal Loss alpha =0.25,gamma =2) 0.9970 0.826(0.707 0.797 0.9962
BCE+-dice (took means of them ) 0.9968 0.818(0.696 0.735 0.9982
boundary with dice 0.9956 0.805[0.674 0.725 0.9979

Table 1. Evaluation metrics of the UNET with various loss functions

Input image Ground truth Cross entropy DICE COEF Tversky Focal Loss BCE with dice boundary witk

dice

Fig. 3. Example of the predicted segment of the breast tumor of UNET model with
various loss functions

In the future work we will perform FCDensenet model on our dataset, also
we will evaluate FCDensenet model with Dual Attention, Dilated convolution
and Multiscale contextual information.
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1 Introduction

In 1989, LeCun et al. [7] devised the first Convolutional Neural Network
(CNN), which mimicked the organization of neural cells in the visual cortex
as convolutional filters. This new type of neural network was able to recog-
nize 10 digits in hand-written text very accurately. The majority of existing
CNN models deal with the basic Red-Green-Blue (RGB) color values from in-
put pixels. Despite this is the obvious choice taking into account that digital
images are usually encoded with RGB, it’s curious that very few researchers
have attempted to train their networks on images encoded with other color
spaces such as Hue-Saturation-Lightness (HSL) or CIE-LAB, the definition
of which are vastly known and long-standing in the fields of color perception
[2] and colorimetry [6]. The rationale behind trying other color spaces than
RGB is based on evidences that the human color vision transforms the initial
neural signals from cones and rods into an opponent color model [5], where
several layers of neurons convert the Short, Medium and Large wavelength
neural signals, loosely related to blue, green and red hues, into other neural
signals. In regards to the human color perception [2], these opponent signals
are further processed and converted into perceptual color components, named
as Hue, Saturation and Lightness. There are several computational models
that convert RGB into HSL-related components, for example, Smith’s HSI [3]
and Yagi’s HSV [4].

2 Materials and methods

In order to check our hypothesis, we will perform image classification experi-
ments on the CIFAR-10 dataset [1], which consists of 60k 32x32 RGB labelled
images, belonging to 10 different classes: airplane, automobile, bird, cat, etc.
These images are taken from natural and uncontrolled lightning environment,

* PhD advisors: Domeénec Puig, Santiago Roman{ and Mohamed Abdel-Nasser
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contain only one prominent instance of the object to which the class refers,
and the object may be partially occluded or seen from an unusual viewpoint.
We aim to explore a simple CNN able to obtain a reasonable test accuracy
(above 80%) in the CIFAR-10 image classification task. We compare its be-
havior (accuracy variation, patterns in first layer filter, etc.) from the basic
RGB to the CIE-LAB encodings. These experiments were made with a Free
Pascal based neural network APT [8].

3 Experiments

As a baseline, we defined a single-branch CNN architecture small enough to
classify CIFAR-10 dataset with at least 80% test accuracy. This single-branch
architecture is shown in figure 1.

5x5
conv

dense | | dense dense

Conv. Max
filter pooling

Fig. 1. Graphical representation of the single-branch baseline CNN architecture.

One of the purposes of our research is to create an architecture that takes
advantage of separated chromatic and achromatic channels, which are readily
available in color spaces such as CIE-LAB or HSV, as explained in the intro-
ductory section. To this aim, we propose to create two separate paths for the
first convolutional layer, each one dedicated to each type of pixel information
(achromatic/chromatic), in order to specialize the first layer filters of the CNN
to the mentioned aspects of the scene (light variations, object boundaries). We
hypothesize that this specialization may lead to a better object identification,
as a consequence of a more object-related representation of the image content.
Figure 2 shows the proposed two-branch architecture, where the top branch
processes the single achromatic channel while the bottom branch processes
the two chromatic channels. For example, we can convert RGB into CIE-LAB
color encoding, hence the L channel is fed into the top branch, while the AB
channels are fed into the bottom branch.
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5x5

conv
Split 28

Input

: z Tdense dense | |dense
Ié a::
73 7
54

Fig. 2. Graphical representation of the single-branch baseline CNN architecture.

4 Results

As shown in the table 1, our baseline RGB model obtained 84.4% accuracy
with 15.5 million floating point operations on the forward pass while our
two-paths model obtained 84.7% accuracy with 11.7 million flops meaning a
reduction about 29% in the required forward pass computation. The figure 3
shows the L (achromatic path) and the AB (chromatic path) learned patterns.

model color space accuracy million flops
baseline RGB 84.4% 16.5
two-paths  LAB 84.7% 11.7

Table 1. RGB baseline and LAB two-paths results.

5 Conclusions

By splitting LAB filter values into two branches, one for L and another for AB,
we can force a CNN to find prototypical sets of achromatic/chromatic filters
allowing the CNN to achieve similar accuracy while decreasing the required
computation. In essence, we have devised a modification of the first layer of a
CNN into two branches, which optimizes the number of weights when dealing
with a color encoding that separates achromatic from chromatic channels,
such as LAB, HSL, etc. Although the proposed architecture does not increase
the validation accuracy significantly, it points out that uncorrelating the input
features eases the learning task of any CNN. As a future work in this line, we
aim to find out other “correlations” in mid-level or high-level layers, hence we
may be able to specialize the network neurons to different types of information.
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Fig. 3. Learned patterns in the L and the AB paths.
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1 Introduction

Breast cancer is one of the most common malignancies in women worldwide
and a leading cause of death [1]. On the other hand, early diagnosis has been
repeatedly shown to reduce overall disease burden and mortality and help to
get successful treatment. The classical imaging diagnostic tools used for breast
cancer screening are mammography (X-ray images of the breast) and breast
ultrasonography (BUS). However, the 2-D imaging modality of these images
causes the presence of high breast density (dense fibro glandular tissue in the
breast) which limits the sensitivity and specificity of breast lesion detection
[2].

Digital breast tomosynthesis (DBT) which is a new 3-D breast cancer
screening technique, has the ability to address the limitation of tissue overlap-
ping and superimposition in mammography [3] by providing superior tissue
visualization which yields enhanced breast lesion detection rate. However, as
the number of slices to evaluate grows, physicians’ oversight of findings in-
creases which creates clinical workflow challenges since it is necessarily that
radiologists are required to examine a greater number of slices per breast vol-
ume. As a result, computer-aided detection (CAD) is regarded as the ideal
solution for clinical DBT and plays a greater clinical role in improving work
performance than traditional digital mammography. Furthermore, Due to the
higher mass margin visibility in DBT images, it is also probably that CAD
will perform better than with mammographic images [4].

Despite the fact that many automated lesion detection approaches for ac-
curately detecting breast cancer in mammographic images have been proposed
in the literature, alongside the lack of enough annotated DBT images which
held back the number presented detection methods for DBT, breast cancer
detection in mammographic and DBT images is still a challenging task. In this
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Work, we present an automated deep learning-based breast lesion detection
method for DBT images based on investigating the impact of two data aug-
mentation techniques called channel-replication and chancel-concatenation in
improving the breast lesion detection results of robust object detection models
like YOLO [5] and Faster R-CNN [6].

2 Deep Learning Based Breast Cancer Detection System

Deep learning is a part of machine learning that has revolutionized the area
of computer vision and has been employed in various of medical detection
application including breast cancer detection. The key elements of our pro-
posed method are data augmentation, deep learning based detector, and non-
maximum suppression (NMS).

2.1 Data augmentation

Data augmentation techniques are used in deep learning by implementing
different image manipulation algorithms to increase the number of training
images. In this work, We analyze the effect of two different data augmentation
techniques.

e Channel-replication. In this practice, the N training images are in-
creased by 6N through flipping all images in the training set horizontally,
then gamma correction is applied for each image I, (original and flipped
image) following the Equation 1 to adjust the overall brightness of an
image to generate I,. In addition,/qne images is generated by applying
the contrast limited adaptive histogram equalization (CLAHE) to enhance
the image Local Contrast [7]. To calculate the clip limit for the CLAHE
algorithm, we follow Equation 2.

I
I, =255 x (55)° (1)

Where I, is the output image for gamma correction and 7 is the gamma
correction factor.

o W x H Q

cliplimit = T <1 + 100 (Smax — 1)) (2)
Where W x H is the number of pixels in each histogram calculated region,
L is the number of gray-scales, « is a clip factor, and Sj,q, is the maximum
allowable slope.

e Channel-concatenation. In this practice, unlike the traditional aug-
mentation techniques, the number of data is not increased. But, a new
3-channel training images (I) has been produced by concatenating the
original image with two post-processed images as shown in Equation 3,



Title Suppressed Due to Excessive Length 3

following the idea in [8]. The two filtered images (I, with v = 0.5 and
Iiahe with o = 1) is concatenated with the original gray-scale image I,.

I = Concat(Iy, Iy, Iighe) (3)

Here, 1,14,1,, and Iyuhe is output image, image after gamma correction
and image after CLAHE equalization, respectively.

2.2 Deep learning based competent detection models

We used two widely known and efficient deep learning-based object detectors:
YOLO [9] and Faster-RCNN [6], to develop the individual deep learning-based
detection models.

In this work, we employed YOLO Version 5, which is now the most ad-
vanced object detection algorithm of the YOLO family available. It is a novel
approach that detects objects in real-time with great accuracy. It uses a sin-
gle neural network based on convolutional neural network (CNN) to process
the entire image then separates it into parts and predicts bounding boxes and
probabilities for each component. YOLOV5 is available in four models, namely
(YOLO-Small (S), YOLO-Medium (M), YOLO-Large (L), and YOLO-XLarge
(XL)).

In addition, faster R-CNN detector is employed for further attestation of
the proposed approach. Faster R-CNN the most widely used state of the art
version of the R-CNN family. It comprises four major parts: 1) a feature
extractor stage—usually using a CNN, 2) a region proposal (RPN) algorithm
which utilise a CNN network instead of using a selective search algorithm to
predict bounding boxes of possible objects in the image with a confidence score
that yield accelerating training time and improving feature representation, 3)
a classification layer to predict which class this object belongs to, and 4) a
regression layer to make the coordinates of the object bounding box more
precise.

2.3 Implementation

Firstly, the DBT images dataset was divided patient-wise into training and
testing sets. During the training phase, we use the data augmentation tech-
niques described in section 2.1 to generate two training sets (training set by
channel-replication augmentation and training set by channel-concatenation
augmentation). Then, we train each of the detectors mentioned in section 2.2
individually for each of these training sets.

Second, the trained models are used to predict bounding boxes for each
DBT image in the test set during the testing phase. A single bounding boxes
list contains all predicted bounding boxes from a single DBT image is passed
to the (NMS) algorithm, which selects the best bounding box from a set of
overlapping or duplicated boxes.
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2.4 Experimental results

Table 1 presents a quantitive comparison between the four YOLOv5 models
(YOLO-S, YOLO-M, YOLO-L and YOLO-XL) and the faster R-CNN model
trained on the both training dataset produced by channel-replication augmen-
tation and channel-concatenation augmentation in terms of true positive rate

(TPR), Fl-score, and mean average precision—mAP (IoU threshold = 5).

Table 1: The performance of the deep learning detection methods [10]

Augmentation Channel-replication Channel-concatenation
YOLOv5 YOLOvV5

Models S M T XL Faster R-CNN S M L XL Faster R-CNN

TPR 38.8 31.8 24.2 22.7 50 47 39.4 39.4 47 56.1

F1-Score 48.5 45.7 36.1 35.7 54.1 52.5 51.7 56.6 51.4 57.4

mAP [iou = 0.5]|31.8 34.1 26.2 26.7 45.1 48.7 38.940.4 41.8 46.8

As one can see, YOLO-S achieved the best lesion detection results when
compared to the other YOLO models for channel-replication. However, faster
R-CNN could be more suitable for DBT images as it has more promising
breast lesion detection results that surpassed all YOLO models on all mea-
sures. It is notable that training the deep learning detectors based on channel-
concatenation yields noticeable improvements on all metrics [10], where the
performance of the YOLO-S model increased by 17 points in terms of mAP.
Besides, the TPR and Fl-score of the faster RCNN were also advanced 6%
and 3.3%, respectively. On the basis of the above analysis, we can conclude
that channel-concatenation data augmentation technique can significantly im-
prove the breast lesion detection results for deep learning-based breast lesion
detectors like YOLO models and faster R-CNN.

3 Conclusions

In this work, we present the strength of two data augmentation strategies
(channel-replicate and channel-concatenation) while building state of the art
breast lesion detection models based on deep learning for digital breast to-
mosynthesis.

The study demonstrate that applying the channel-concatenation data aug-
mentation strategy helps improve the detection accuracy of all deep learning
models. With a publicly available digital breast tomosynthesis dataset. The
future work will be focused on the development of a lesion detection approach
based on the combination of robust deep learning-based detectors.

Acknowledgement. The Spanish Government partly supported this research through
Project PID2019-105789RB-100.
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1 Introduction

Road damage detection is one of the most important issues related to safety, which
is directly related to human life and vehicles. Most of the basic infrastructure of
most countries dates back to previous decades. For example, a country like Japan,
during the boom of economic growth in the late 20" century, extensively built roads,
bridges, etc[1]. That is, the infrastructure age is now more than 50 years old, and
needs to be inspected and proper maintenance conducted.

The process of road inspection and maintenance is time-consuming and costly,
since this infrastructure extends for thousands of kilometers, and to detect damaged
parts by traditional methods, requires advanced survey equipment, huge financial
resources, and experts. For this reason, most municipalities neglect the detection
procedures[2]. The problem of aging infrastructure is prevalent in other countries
such as the United States of America[3], and it is considered a vexing problem for
municipalities. However, the need for efficient and advanced ways to maintain in-
frastructure has become an urgent necessity.

Recently, several methods and studies have been conducted to address this prob-
lem including methods of using laser technology or image processing, in addition,
using neural networks and machine learning techniques. In 2018, the Road Damage
Dataset 2018[4] was published and a challenge was held in Seattle, USA, based on
this dataset. A total of 59 teams from 14 countries participated in this competition,
all the top results use an ensemble that applies multiple NNs.

Our work is aimed to detect and classify the road damages in order to facilitate
decision conducting for road managers to do a proper maintenance according to the
damage type. To do this, Yolov5 is used in our experiments due to its robustness and
promising results as well as the Road Damage Dataset 2018.

* PhD advisors: Domenec Puig, Mohamed Abdelnasser and Hatem Abdellatif.
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2 Methodology

2.1 Dataset

The dataset consists of 9053 labeled road damage images with the resolution of
600X600 pixels, which are taken from different cities in Japan (Adachi, Chiba, Ichi-
hara, Muroran, Nagakute, Numazu, and Sumida). In this dataset we have 8 classes of
road damages separated as follows: D00, DO1, D10, D20, D40, D43, and D44. These
classes are defined in the tablel. In these 9,053 images there are 15,435 instances are
distributed to all 8 classes as shown in the figurel

Damage type Detail Class name
Crack|Linear crack |Longitudinal Wheel mark part D00
Construction joint part D01
Lateral Equal interval D10
Construction joint part D11
Alligator crack Partial pavement, overall pavement| D20
Other corruption Rutting, bump, pothole, separation D40
Crosswalk blur D43
White line blur D44

Table 1: Source: Road Maintenance and Repair Guidebook 2013 (JRA, 2013) in
Japan. Note: In reality, rutting, bumps, potholes, and separations are different types
of road damage, but it is difficult to distinguish these four types using images. There-
fore, they were classified as one class, namely, D40.

Doo D01 D10 D11

D20 D40 D43 D4

Fig. 1: The instances of each class in the Road Damage Dataset 2018.
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Fig. 2: YOLOV5 Models Comparison.

2.2 Train models using Yolov5

Yolov5 has multiple varieties of pretrained models as shown in the figure2 trained
on the COCO dataset. In our experiments, we started the training process with
YOLOVS5x pre-trained model as initial weights with different image sizes (448 and
608) and with YOLOvV5x6 pre-trained model as initial weights with image sizes (448
and 576), all with the default hyperparameters.

3 Results

Figure3 shows the predictions results compared to the ground truth, the best model
model we got achieved an Fl-score of 0.631, where this result without applying
any improvements such as test-time augmentation or model ensembling. Applying
the test time augmentation and model ensembling led to improving the predictions
almost in all metrics, table2 shows the results in details.

Yv5x_448|Yv5x_608|Yv5x6_576 TTA |Precision| Recall mAP@.5 mAP@.5:.95 F1-score
X 0.644 0617 0.64 0.364 0.63
X X 0.634 |0.614| 0.633 0.361 0.623

X 0.629 |0.633| 0.625 0.359 0.631

X X 0.695 |0.608 | 0.647 0.374 0.648

X 0.617 |0.644 | 0.642 0.364 0.63

X X 0.613 |0.657| 0.65 0.37 0.634

X X X 0.631 |0.649| 0.658 0.378 0.639
X X X 0.59 [0.675| 0.664 0.376 0.629
X X X 0.648 |0.641| 0.662 0.378 0.644

X X X X 0.629 |0.657| 0.666 0.381 0.642

Table 2: The results for all trained models
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(a) Labels of a batch of 16 images (b) Predictions of a batch of 16 images
Fig. 3: Comparison between the Groundtruth and prediction

4 Conclusions

The results obtained using Yolov5 show that our approach was able to achieve results
close to the state_of_the_art, where we can get a mAP@.5 up to 0.666, mAP@.5:.95
up to 0.381 and F/ score up to 0.648.
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